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It is commonly accepted that the climate records in Chinese loess can be correlated well with that in marine
sediments. However, discrepancies for the stratigraphic position of paleomagnetic polarity reversal boundary
seriously restrict an accurate teleconnection between these two archives. For example, the exact stratigraphic
position of the whole Matuyama–Brunhes (MB) transitional polarity zone remains uncertain in Chinese loess.
In this study, an accurate transitional zone of the MB reversal from the Mangshan profile, southeast margin of
the Chinese Loess Plateau (CLP), was statistically determined using multiple subsets of parallel samples. By
integrating results from the central CLP, the whole MB transitional zone is consistently located across the
pedostratigraphic and climatostratigraphic transitional zones between S8 and L8 over a wide region of the
CLP. This conclusion further supports that the paleosol unit S8 should be teleconnected to the marine oxygen
isotope stage 19 rather than 21, and thus unambiguously supplies an accurate age control in constructing a
new loess time scale.

Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.
1. Introduction

The alternating sequences of loess and paleosol from the Chinese
Loess Plateau (CLP), considered as one of the most continuous
terrestrial archives, preserve detailed paleomagnetic and paleocli-
matic information for the last 2.6 Ma (e.g., An, 2000; Kukla and An,
1989; Liu, 1985; Liu and Ding, 1998), or even the last 22 Ma (Guo
et al., 2002b). Further studies showed that the paleoclimatic signals
can be correlated well with the marine oxygen isotope records (e.g.,
An et al., 2001; Deng et al., 2006; Ding et al., 2002; Heller and Evans,
1995; Heller and Liu, 1986). However, there is a longstanding
controversy on correlations of paleomagnetic polarity reversal
boundaries between these two archives. For example, the
Matuyama–Brunhes (MB) boundary (MBB), the last geomagnetic
reversal (~780 ka B.P.; Shackleton et al., 1990), as an important age
control point, was commonly reported in loess horizon L8 (formed
during a glacial period) in Chinese loess (e.g., Liu et al., 1988; Pan et al.,
2002; Rutter et al., 1991; Sun et al., 1998; Yang et al., 2004; Zheng
et al., 1992), whereas in marine sediments it was located in marine
oxygen isotope stage 19 (MIS19, an interglacial stage) (e.g., Liu et al.,
2008; Tauxe et al., 1996, and references therein). Large downward
displacement of the MBB associated with post-depositional remanent
magnetization acquisition lag (PDRM lock-in depth) has been pro-
posed to explain this discrepancy by Zhou and Shackleton (1999).
10 Published by Elsevier B.V. All rig
They put forward that the MBB in Chinese loess should be located in
the paleosol unit S7, not in the loess unit L8, and thus MIS19 would be
tied to S7, not to S8. The corresponding PDRM lock-in depth ranges
between a few tens and over 300 cm (Zhou and Shackleton, 1999).
Spassov et al. (2003) have developed a lock-in model with two lock-in
zones, where PDRM was superposed by chemical remanent magne-
tization, to support the large scale displacement of theMBB in Chinese
loess. However, an inaccurate climatic boundary between L8 and S8
has been considered as the main cause for stratigraphic position
confusion of the MBB by Liu et al. (2008). They revealed that the MBB
at Lingtai and Zhaojiachuan sections were actually located in the
upper part of S8.

The MBB at these two sections studied by Liu et al. (2008) are
abrupt reversal boundaries due to a low sampling resolution (20 cm
interval; Liu et al., 1988; Sun et al., 1998). Little is known about the
duration and stratigraphic position of the whole MB transitional zone
which lasts about 3–10 ka recorded in both marine sediments (e.g.,
Clement, 2004; Love and Mazaud, 1997, and references therein) and
profiles from the other regions of the CLP (e.g., Spassov et al., 2001;
Wang et al., 2006; Zhu et al., 1994a). Recently, Jin and Liu (2010)
developed a new approach to statistically determine the exact MB
transitional zone by measuring multiple subsets of parallel samples
across the MBB. Compared to the stepwise pattern of the MBB
investigated by Liu et al. (2008), the advantage of Jin and Liu's (2010)
new approach makes it feasible to accurately determine the
stratigraphic position of the whole MB transitional zone.

In addition, most of the reported MBB records clustered in the
central CLP and little is known about that in the southeast periphery of
hts reserved.
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the CLP. TheMBB records are essential for the southeastern CLP where
sensitive to east-Asian summer monsoon. Therefore, in this study, by
taking advantage of Jin and Liu's (2010) new approach, the Mangshan
section (Fig. 1) will be investigated, which is situated at the southeast
most margin and is far away from the central CLP. The stratigraphic
position of an entire and an accurately recorded MB transitional zone
in the Chinese loess will be addressed.

2. Sampling

TheMangshan section (34.9°N, 113.3°E) is located in the southeast
margin of the CLP, about 380 km southeast of the famous Luochuan
section in the hinterland of the CLP (Fig. 1). The thickness of the
whole section is ~171 m, covering 12 paleosol horizons (S0–S11),
interbedded with 11 loess horizons (L1–L11) (Fig. 2). The whole
profile can well be correlated with what is commonly seen in the
central CLP with exception of the top four extremely thick loess–
paleosol beds, L1 to S2. The magnetic stratigraphy below S7 of this
profile has been constructed by Zheng et al. (2007) using a single set
of samples with relatively low stratigraphic resolution (sampling
interval N20 cm). The MBB was approximately located in the lower
part of L8 (Fig. 2). Nevertheless, the results of Zheng et al. (2007)
provide useful background information for our high-resolution paleo-
magnetic studies.

In this study, paleomagnetic block samples (7×7×30 cm3)
covering L8 and S8 were collected from the Mangshan section after
removingweathered surface sediments. The samples were oriented in
situ using a magnetic compass. We define the top of L8 as the zero
position. The L8 and S8 beds are about 5 m thick in total. In the lab, the
Fig. 1. A schematic map showing the distribution of the Chinese Loess Plateau and the locati
indicate other sections mentioned in the text.
block samples were sawn into 2.5 cm thick slices first, and then cut
into 2×2×2 cm3 specimens. A total of 526 oriented specimens (five
subsets of parallel samples) were obtained.

3. Experiments

The low field magnetic susceptibility (χ, *mass-specific) was
measured using a Bartington MS2 susceptibility meter. Temperature-
dependent susceptibility (χ–T) curves were measured using a KLY-3s
Kappabridge equipped with a CS-3 high-temperature furnace going
from room temperature up to 700 °C in an argon atmosphere (the
flow rate is about 50 ml per minute) to avoid magnetic mineral
alteration upon heating. Temperature-dependent saturation magne-
tization (Ms–T) curves were measured using a variable field
translation balance system (VFTB). Samples for the Ms–T curves
were heated in air in an applied field of 1 T. The temperature
sweeping rate was 40 °C per minute. Hysteresis loops, isothermal
remanent magnetization (IRM) acquisition curves, and back field
demagnetization curves were measured with a Princeton Measure-
ments vibrating sample magnetometer (VSM3900). The anisotropy of
magnetic susceptibility (AMS) for oriented specimens was measured
with a KLY-3s Kappabridge before thermal demagnetization.

Progressive thermal demagnetization of the natural remanent
magnetization (NRM) was carried out from room temperature up to
585 °C using a Magnetic Measurements Thermal Demagnetizer
(MMTD80) with a residual magnetic field of b10 nT. All remanences
were measured using a 2 G Enterprises Model 760 cryogenic
magnetometer installed in a magnetically shielded room (residual
field b300 nT). One set of oriented samples between 102.5 and
on of the Mangshan, and Luochuan sections (stars), modified after Kukla (1987). Circles
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390 cmwas first demagnetized to locate the MBB. Then the other four
parallel sample sets (A–D) between 130 and 280 cm were thermally
demagnetized to define the exact position of theMB transitional zone.

The colour reflectance of bulk samples across the MBB from both
theMangshan and Luochuan sections wasmeasured using a handheld
Minolta-CM2002 spectrophotometer. We adopt red–green chroma-
ticity a* to identify the stratum (refers to colour-a*). Grain size was
measured with a SALD-3001 laser diffraction particle analyzer.
Ultrasonic pretreatment with the addition of 20% (NaPO3)6 solution
was used to disaggregate the samples before measurement.
4. Results

4.1. Rock magnetic results

Stepwise acquisition of the IRM curves climbs quickly before
200 mT and reaches approximate saturation at about 300 mT (Fig. 3a),
indicating existence of dominant low coercivity magnetic carriers
(e.g., magnetite, maghemite). The IRM curves increase faintly after
300 mT until 2 T, indicating the presence of hard magnetic minerals
(e.g., hematite, probably goethite) (Yang et al., 2010). SIRM for
samples from the paleosol unit is evidently higher than that from the
loess layer.

After the removal of a significant paramagnetic contribution,
hysteresis loops for all the samples show similar characteristics. They
are almost closed before 300 mT (Fig. 3b), indicating existence of soft
magnetic minerals (e.g., magnetite, maghemite) (Deng et al., 2004),
consistent with results of the IRM curves. Loops for samples from S8
display weakly wasp-waisted shape (Roberts et al., 1995).

The χ–T curves are almost reversible except the one at 207.5 cm.
The heating curves for all the samples are similar in shape. Upon
heating, the χ increases slowly below 200 °C, and decreases steadily
between 200 and 400 °C and sharply after 400 °C. The χ–T curves
show a major inflexion at about 585 °C upon heating, displaying the
Curie point of magnetite (Fig. 3c). The slightly decreases over 200–
400 °C are commonly considered to be maghemite signals with
conversion to weakly magnetic hematite (Deng et al., 2000, 2004,
2006; Deng, 2008; Liu et al., 2005b).

The inflexions in the Ms–T curves at about 580 °C further suggest
the presence of magnetite (Fig. 3d). Maghemite is also identifiable
from the kink over 300–450 °C (Liu et al., 2003; Wang et al., 2005;
Yang et al., 2008, 2010).Hematite signals are weakly displayed in both
the Ms–T curves and the χ–T curves which slightly decrease above
600 °C.

Hysteresis parameters ratios, Mrs/Ms, Bcr/Bc (termed Day plot; Day
et al., 1977), were plotted on a revised version (Dunlop, 2002). All
ratios cluster closely in the pseudo-single-domain (PSD) grain size
region (Fig. 4). This indicates that the mean grain size of magnetic
minerals in samples is rather uniform across the sampled interval.

4.2. AMS results

Zhu et al. (2004) found that the AMS of the Chinese loess/paleosols
is essentially controlled by ferromagnetic components, and effects
from paramagnetic components are negligible. Constrained by the

image of Fig.�2
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field-impressed AMS and the anisotropy of anhysteretic remanent
magnetization (AARM) of the Chinese loess, Liu et al. (2005c) further
put forward that magnetic lineation is determined by coarse-grained
magnetite, and thus can be used to indicate the paleowind direction.
AARM often has higher anisotropy than AMS, but to the first order, it
seems that they are linearly correlated (Liu et al., 2005c). Therefore,
the AMS results, especially the inclination of the maximum suscep-
tibility axis and minimum susceptibility axis, have been widely used
in loess studies to detect possible disturbance of the original sediment
fabric and to test the reliability of NRM recording (e.g., Guo et al.,
2001, 2002a; Liu et al., 1988, 2005a; Wang et al., 2005, 2010; Yang
et al., 2007, 2010; Zhu et al., 1994a, 1999, 2004).

The equal-area stereographic projections of the AMS principal
directions for the oriented samples are shown in Fig. 5. The inclina-
tions of the maximum susceptibility axes are b15° (96% b10°),
approximately parallel to the horizontal plane. The inclinations of
the minimum susceptibility axes are N75° (86% N80°), perpendicular
to the horizontal plane. Such an oblate AMS pattern represents a
primary depositional sediment fabric without apparent disorder and
disturbance.

4.3. Paleomagnetic results

The orthogonal projections (Zijderveld, 1967) for four represen-
tative specimens show normal (Fig. 6a, c) and reverse (Fig. 6b, d)
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Fig. 5. AMS principal directions in an equal-area stereographic projection. Squares,
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polarity, respectively. There are two magnetic components in the
NRM demagnetization curves. The low temperature component
(b300 °C) of NRM was commonly considered as viscous remanent
magnetization (VRM) and could be eliminated after about 250–300 °C
thermal treatment (e.g., Deng, 2008; Heller and Liu, 1982; Pan et al.,
2001; Zhu et al., 1994a). A characteristic remanent magnetization
(ChRM) was isolated successively for most of the samples (77%)
between 300 and 550 °C using principal component analysis
calculated by the least-squares fitting technique of Kirschvink
(1980). Associated with the rock magnetic results, the ChRMs are
carried pre-dominantly by PSD magnetite, which is considered to be
of eolian origin. This is consistent with previous studies (e.g., Heller
and Liu, 1982, 1984; Pan et al., 2002; Yang et al., 2010; Zhu et al.,
1994a). An abnormal paleomagnetic polarity zone can be unambig-
uously determined by the five subsets of parallel samples in the 170–
255 cm interval (Fig. 7).
4.4. Climatology proxies

The colour-a* has been considered as an efficient proxy for the
weathering intensity of loess and been used in pedostratigraphy
division (Yang and Ding, 2003). Magnetic susceptibility and median
grain size are commonly accepted as proxies for the east-Asian
summer andwintermonsoons, respectively (An, 2000; An et al., 2001;
Ding et al., 2002; Liu and Ding, 1998). The colour-a* and magnetic
susceptibility values are higher in the paleosol unit than in the loess
unit in both the Mangshan and Luochuan sections, whereas the
median grain size displays a contrary behavior (Fig. 8).
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5. Discussion

Most previous studies on the paleomagnetic records from the
Chinese loess relied on only single set of samples (Liu et al., 1988; Pan
et al., 2002; Rutter et al., 1991; Sun et al., 1998; Yang et al., 2004; Zheng
et al., 1992). Such an approach cannot determine the fidelity of the
paleomagneticwiggles represented by only a few samples (e.g., Spassov
et al., 2001; Sun et al., 1993; Yang et al., 2010; Yue et al., 1990), and thus
potential ambiguities exist when defining the polarity transitional
boundary of paleomagnetic reversals. This study confirmed the ideas of
Jin and Liu (2010) that theChRMsofmultiple subsets of parallel samples
are inconsistent during the transition, whereas keeping agreement
outside the transition (Fig. 7). This phenomenon has been attributed to
the low efficient alignment of detrital magnetite along with a weak
paleomagnetic field during a polarity transition period (Jin and Liu,
2010). An alternative interpretation of the complicated NRM records
from theChinese loess is due to effects from lock-inprocesses (Zhou and
Shackleton, 1999). However, such a model cannot be applied to the
coeval parallel samples. In addition, more studies support a small NRM
lock-in depth in Chinese loess (e.g., Pan et al., 2002; Wang et al., 2006;
Yang et al., 2008, 2010; Zhu et al., 1994a, 1998, 2006). Sediment
redeposition experiments suggest that the capability of deposited loess
dust to acquire a PDRM is enhanced with water content (Zhao and
Roberts, 2010). Magnetic particles as ChRM carriers in the deposited
dusts can be fixed permanently along the ambient field after the initial
wetting (Wang and Løvlie, 2010). The moisture in the sedimentary
environment is associated with the rainfall in the CLP and results in a
shallow lock-in model, which is also evident in the short-period
paleomagnetic events recorded in Chinese loess, such as magnetic
excursions (e.g., Fang et al., 1997; Pan et al., 2002; Yang et al., 2007;
Zheng et al., 1995; Zhu et al., 1994b, 1999, 2006, 2007). Thus, the
downward displacements of the polarity boundaries in loess may be
limited to only several centimeters due to high sediment rates and
shallow NRM lock-in depth (Liu et al., 2008), associated with a limited
surface mixing layer (b10 cm) (Sun et al., 2010).

Although the detailed morphology for a paleomagnetic polarity
transitional field cannot be accurately defined at these two loess sites,
the MB transitional zones have been statistically and less ambiguously
determined, such as the 170–255 cm interval at Mangshan section.
Because the deposition rate of Chinese loess differs significantly among
different profiles, the thickness of the MB transitional zone should be
also different. Therefore, in order to compare the duration of the MB
transitional zone recorded at different profiles, the ratio (TMBB/TL8+S8,
where T indicates the thickness) of the thickness of the MB transitional
zone to the total thickness of L8 and S8 is defined. TL8+S8 values for the
Luochuan and Mangshan profiles are ~290 and ~500 cm, respectively.
The corresponding TMBB values are 47.5 and 85 cm, respectively.
Therefore, the ratios of TMBB/TL8+S8 for these two profiles are 0.164
and 0.170, respectively, which indicates a rather consistent duration of
the MB reversal recorded in these two areas.

It is difficult to recognize the precise pedostratigraphic boundary
between S8 and L8 in field, but it can be more accurately defined by
multiple proxies (soil structure and colour, magnetic susceptibility,
and the median grain size) in both the Mangshan and Luochuan
sections (Fig. 8). In addition, grain size is superior to susceptibility
because the latter is controlled more by the amount of the local
precipitation (Liu et al., 2005a; Maher and Thompson, 1995).
Apparently, the whole MB transitional zone is not singly recorded in
a loess unit or a paleosol unit, but in the interval which transgresses
from the paleosol unit S8 into the loess unit L8 (shaded in Fig. 8).

The magnetic behavior around the MB reversal at the Mangshan
section resembles that in the Luochuan region (Jin and Liu, 2010),
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indicating a possible spatial comparability of paleomagnetic recording
pattern in Chinese loess, although pedogenesis is enhanced in the
southeast margin of the CLP as compared to the central areas (Wang
et al., 2006). By combining results from the central CLP (Heller and
Liu, 1982; Jin and Liu, 2010; Yang et al., 2010) and from the southeast
margin of the CLP in this study, the MBB is unambiguously recorded
across the stratigraphic transition boundary between S8 and L8 over a
wide range of the Chinese Loess Plateau. In marine sediments, owing
to decimeter scale PDRM lock-in depth (deMenocal et al., 1990; Liu
et al., 2008; Roberts and Winklhofer, 2004), the MBB is most likely to
lie in the late MIS19 (Liu et al., 2008), not in the middle of MIS19 as
suggested by Lisiecki and Raymo (2005). This case is consistent with
the MBB records in Chinese loess with a stratigraphic position partly
in the upper part of S8 (formed during an interglacial period).
Therefore we further conclude that S8 should correlate to MIS19, and
not to MIS21 as proposed by Zhou and Shackleton (1999), and thus
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the chronological framework for the Chinese loess-paleosol sequences
based on the strongly delayed lock-in models should be reconsidered.

6. Conclusions

Compared to previous studies, the major contribution of this study
is that the stratigraphic position of the whole MB transitional zone is
consistently determined over a large spatial region from the center to
the southeast margin of the CLP. Based on pedostratigraphic and
climatostratigraphic division, the MB transitional zone is not singly
recorded in the loess unit L8 or the paleosol unit S8, but in the
stratigraphic transition zone which transgresses from S8 into L8. This
is important for constructing a new chronology framework for the
Chinese loess-paleosol sequences. It should be considered as a routine
approach to determine the accurate position of the MBB in Chinese
loess using sets of parallel samples.
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