
Methods Note/

A Parallel PCG Solver for MODFLOW
by Yanhui Dong1 and Guomin Li2

Abstract
In order to simulate large-scale ground water flow problems more efficiently with MODFLOW, the OpenMP

programming paradigm was used to parallelize the preconditioned conjugate-gradient (PCG) solver with in this
study. Incremental parallelization, the significant advantage supported by OpenMP on a shared-memory computer,
made the solver transit to a parallel program smoothly one block of code at a time. The parallel PCG solver,
suitable for both MODFLOW-2000 and MODFLOW-2005, is verified using an 8-processor computer. Both the
impact of compilers and different model domain sizes were considered in the numerical experiments. Based on
the timing results, execution times using the parallel PCG solver are typically about 1.40 to 5.31 times faster
than those using the serial one. In addition, the simulation results are the exact same as the original PCG solver,
because the majority of serial codes were not changed. It is worth noting that this parallelizing approach reduces
cost in terms of software maintenance because only a single source PCG solver code needs to be maintained in
the MODFLOW source tree.

Introduction
MODFLOW (Harbaugh et al. 2000) has been widely

used to simulate ground water flow using the finite-
difference method for decades. While this code performs
satisfactorily in solving most relatively simple two- or
three-dimensional problems, it takes a large computa-
tional effort when applied to solve problems with massive
grids, such as a large-scale ground water flow model.
There are two ways to significantly shorten computing
time. The first way is to improve and refine the compu-
tational methods, such as preconditioned conjugate gra-
dient (PCG) methods (Hill 1990a) and the link-algebraic
multi-grid (LMG) Package (Mehl and Hill 2001) linking
MODFLOW to an algebraic multi-grid (AMG) solver for

1Key Laboratory of Engineering Geomechanics, Institute of
Geology and Geophysics, Chinese Academy of Sciences, P. O. BOX
9825 Beijing, 100029 China.

2Corresponding author: Guomin Li, Key Laboratory of Engineer-
ing Geomechanics, Institute of Geology and Geophysics, Chinese
Academy of Sciences, P. O. BOX 9825 Beijing, 100029 China;
guominli@mail.iggcas.ac.cn

Received January 2009, accepted May 2009.
Copyright © 2009 The Author(s)
Journal compilation ©2009NationalGroundWaterAssociation.
doi: 10.1111/j.1745-6584.2009.00598.x

matrix equations. The other way is using parallel comput-
ing methods to improve the computational performance
of the numerical codes on supercomputers. Recent par-
allel computer architectures provide both increased per-
formance with respect to execution time and offer an
amount of memory storage that significantly exceeds tra-
ditional single central processing unit (CPU) computers.
In this paper, an incremental parallelization method is
employed to parallelize the PCG solver package (Hill
1990b) of MODFLOW. Incremental parallelization sup-
ports a smooth transition from serial to parallel processing
on shared memory multiprocessors by allowing paralleliz-
ing only parts of a given serial program. Shared mem-
ory multiprocessors have the ability for all processors to
access all memory as global address space, enabling inter-
action and synchronization with each other through shared
variables. This kind of parallel computer is readily avail-
able due to the emerging trends of multicore CPU that
combines two or more independent cores into a single
package composed of a single integrated circuit.

The purpose of this paper is to present a parallel ver-
sion of the PCG package for MODFLOW, which allows
parallel processing on shared memory multiprocessors.
First, the OpenMP programming paradigm is sketched.
Then, it is used to parallelize the PCG solver package.

NGWA.org Vol. 47, No. 6–GROUND WATER–November-December 2009 (pages 845–850) 845

Finally, performance results of the parallel PCG solver
are reported.

Methods

Open MP Programming Paradigm
OpenMP (OpenMP Architecture Review Board 2005)

is an application program interface (API) that may be
used to explicitly direct multithreaded, shared memory
parallelism. It is comprised of three primary API compo-
nents: compiler directives, runtime library routines, and
environment variables, and works in conjunction with
FORTRAN, C, or C++. OpenMP has recently emerged
as a shared memory standard, which is jointly defined
and endorsed by a group of major computer hardware
and software vendors.

OpenMP, based upon the existence of multiple
threads in the shared memory programming paradigm,
uses the fork-join model of parallel execution (Quinn
2004). When the program begins execution, only a sin-
gle thread, called the master thread, is active (Figure 1).
The master thread executes the sequential portions of
the algorithm. At those points where parallel operations
are required, the master thread forks (creates or awak-
ens) additional threads. The master thread and the created
threads work concurrently through the parallel section.
At the end of the parallel code, the created threads die
or are suspended, and the flow of control returns to the
single master thread, called a join. A sequential program
is a special case of an OpenMP program: it is simply one
with no fork/joins in it. OpenMP programs range from
those with only a single fork/join around a single loop
to those in which most of the code segments are exe-
cuted in parallel. Hence OpenMP supports incremental
parallelization, the process of transforming a sequential
program into a parallel program one block of code at a
time. This feature is very helpful on paralleling the PCG
solver.

More information about OpenMP can be found at the
web site: http://www.openmp.org.

Parallelizing the PCG Solver Package
In this study, an incremental approach to parallelize

the PCG solver package with OpenMP was carried
out. Using OpenMP directives, the parallelization can
be applied separately to individual subroutines without
changing the rest of the (serial) program. Moreover, since

Figure 1. The fork/join parallelism of OpenMP.

parallelism is specified via compiler directives, only a
single source tree needs to be maintained.

PCG solver package is a numerical code to be used
with MODFLOW. The solver uses the preconditioned
conjugate-gradient method to solve the equations pro-
duced by the model for hydraulic head. It includes two
preconditioning options: modified incomplete Cholesky
preconditioning (MICCG) and polynomial precondition-
ing (POLCG). Owing to its stronger preconditioner,
MICCG is generally more efficient than POLCG. How-
ever, POLCG is a good parallel algorithm, whereas
MICCG is not. In the study, POLCG was fully parallelized
to take full advantage of parallel architectures, whereas
MICCG was partially parallelized.

The ability of OpenMP to support incremental par-
allelization allows one to profile the execution of the
sequential solver program, sort the program blocks
according to how much time they consume, consider each
block in turn beginning with the most time-consuming,
parallelize each block amenable to parallel execution, as
well as stop when the effort required to achieve further
performance improvements is not warranted.

Profiling the execution of the sequential PCG solver
code reports that the blocks with a three-level nested
DO-Loop took a large part of execution time. The block
structure is:

The variables K, I, and J are the loop counter of
each DO-Loop. The variables NLAY, NROW, and NCOL
denote the number of layers, rows, and columns in the
model grid respectively. The block with a three-level
nested DO-Loop will consume considerable execution
time for a large model. Therefore, the parallelization
focuses on how to parallelize the three-level nested DO-
Loop blocks.

There are three issues that must be obeyed when
parallelizing the blocks with OpenMP.

Grain Size
By analyzing the block code, each of the three loops

could be executed in parallel. If parallelizing the inner
loop, the program will fork and join threads for each
iteration of the outer loop. The fork/join overhead may
very well be greater than the time saved by dividing
the execution of the n iterations of the inner loop
among multiple threads. On the other hand, parallelizing
the outer loop, the program only incurs the fork/join
overhead once. Grain size is the number of computations
performed between communication or synchronization

846 Y. Dong, G. Li GROUND WATER 47, no. 6: 845–850 NGWA.org

steps. In general, increasing grain size improves the
performance of a parallel program. Making the outer loop
parallel results in larger grain size, and therefore the best
option.

Since three-dimensional models are widely used
recently, parallelizing the K loop is considered. If the
model has few layers, especially a two-dimensional model
with a single layer, parallelizing the I loop is a better
choice.

Control Flow
The three-level nested DO-Loop blocks often have

a GOTO statement inside. The GOTO statement is not
allowed in parallelization with OpenMP according to the
current standard (OpenMP Architecture Review Board
2005). To circumvent this problem, the GOTO statement
is removed and an additional IF block is introduced

ensuring that the function performs the same with the
original block, presented in the following code fragment.

Data Scoping
To parallelize the three-level nested DO-Loop blocks,

simply direct the compiler to execute the iterations of the
loop indexed by K in parallel. However, extra attention
should be paid to the variables accessed by the threads. By
default, all variables are shared except loop index K. That
makes it easy for threads to communicate with each other,
but it can also cause problems. When multiple threads try
to execute different iterations of the K loop in parallel,
all of the threads try to initialize and increment the same
shared variable I and J, increasing the chance that threads
will not execute all NROW iterations of I loop and all
NCOL iterations of J loop. The solution is clear that all
three indexes of the three-level nested DO-Loop should
be made private variables by using the OpenMP private
() clause.

Another problem is the race condition, in which the
computation exhibits nondeterministic behavior when per-
formed by multiple threads accessing a shared variable.
For example, consider the case in which data are over-
written by one thread before that data can be read by
another thread. To illustrate, consider the following code
fragment.

The directive-pair !$OMP PARALLEL DO/!$OMP
END PARALLEL DO indicates that the different itera-
tions can be executed by different threads in parallel. The
shared () clause declares variables in its list to be shared

among all threads in the team. The private () clause indi-
cates that each thread maintains a private copy of the
loop index N. The update of SRNEW must be performed
by only one thread at a time. Otherwise, a race condi-
tion on variable SRNEW occurs. The OpenMP reduction
() clause, which creates for each thread a private copy of
the variables that appear in its list, should be employed.
Thus, a private copy of the variable SRNEW is created
for each thread. At the end of the reduction, the variable
SRNEW is applied to all private copies of the shared vari-
able, and the final result is written to the global shared
variable.

Performance Results
This section shows how the parallel PCG solver

performed when solving large ground water problems

with MODFLOW-2000. The first test exhibits the impact
of three different FORTRAN compilers. The second test
examines the performance for different domain sizes of
the same problem. POLCG was used to solve ground
water flow problems in these two tests. The third test
shows the comparisons between POLCG and MICCG.

All timing experiments were performed on a CentOS
5.0 workstation equipped with two quad-core 2.66 GHz
Intel Xeon processors and 16 GB RAM. The speedup,
defined as the ratio of the serial PCG solver computing
time and the parallel PCG solver computing time, is used
to assess the performance of parallel computing.

Test 1—Different Compilers
The first test case, TWRI_LARGE, has 160 rows,

160 columns, and 40 layers, simulating steady-state flow.
In order to determine the impact of different compilers,
three executables have been generated by the Intel FOR-
TRAN compiler 10.1 (ifort), the Lahey FORTRAN 8.1
(lfc), and the GNU FORTRAN compiler 4.2 (gfortran)
using –openmp, –openmp, and –fopenmp compiler flags,
respectively. Eight threads were used to run the parallel
program in this case.

Execution times and speedup for the three compilers
are shown in Figure 2. A maximum speedup of 5.31 times
was achieved by using gfortran. However, the execution
time is also the longest. On the contrary, the execution
time by using ifort is shortest, but the speedup is smallest.
It is noticeable that ifort makes most of the Intel Xeon
processor, on which the workstation is based. Provided

NGWA.org Y. Dong, G. Li GROUND WATER 47, no. 6: 845–850 847

the workstation consists of AMD-based processors, the
speedup for ifort should not be less than 3.83, which
is approximately the average speedup achieved on our
workstation for the three compilers.

Test 2—Different Domain Sizes
The following test case is presented of regional

ground water flow in Beishan area, which is being
studied as a potential site for a Chinese high-level
nuclear waste geologic repository. The study area includes
above 70,000 km2 and lies within the area bounded by
latitude 40◦ and 42◦ North and longitude 96◦ and 100◦

East. A numerical model of three-dimensional flow has
been applied for different domain sizes (Table 1). The
executable has been generated by the GNU FORTRAN
compiler 4.2 (gfortran) using –fopenmp compiler flags in
this test.

The benefit of parallelization is shown in Figure 3,
which reports the execution times using one to eight
threads for the three domain sizes. The speedup of No. 3
model goes up as the threads increasing and the maximum
speedup of 4.49 times was achieved by using eight
threads. For No. 1 model and No. 2 model, the speedup
rises slowly, even goes down a little for No. 1 model
when more than five threads are used. It may indicate that
overhead of communication and synchronization begins
to affect the performance and a larger speedup number
could not be achieved by additional threads. In general,
the larger the domain size, the greater the speedup.

Table 2 shows the results of the required memory
vs. number of threads for the three models. Only 8

Figure 2. Execution times and speedup for three compilers
using eight threads.

or 12 more kilobytes of memory are required for one
additional thread. More memory is required with each
thread that is launched with variables being shared and/or
restricted on shared memory computers. However, it is
minor compared to the memory taken by the model itself.

The simulation results of the parallelized version
using different threads are exactly the same as the original
version.

The speedup of 1.89 with two threads for No. 3 model
is remarkably good. The simulation of MODFLOW,
which is typically running on desktop PCs equipped
with dual-core or quad-core processors, clearly gains
great benefit from the parallel PCG solver since this
immediately leads to a reduced response time of the whole
MODFLOW execution.

It is needed to mention that parallelizing the I loop is
a better choice for models with only a single layer. This
parallelizing option was also tested for the same problem
which is discretized into 1000 rows, 1000 columns, and
one layer. A maximum speedup of 4.25 times can be
achieved using eight threads with this parallel PCG solver.

Table 1
Three Models with Different Domain Sizes

Model Layers, Rows, Columns Nodes

No. 1 200, 200, 10 400,000
No. 2 1000, 1000, 10 10,000,000
No. 3 1000, 1000, 40 40,000,000

Figure 3. Number of threads vs. speedup for different
domain sizes.

848 Y. Dong, G. Li GROUND WATER 47, no. 6: 845–850 NGWA.org

Table 2
The Required Memory vs. Number of Threads for the Three Models (kB)

Threads

Model 1 2 3 4 5 6 7 8

No. 1 37,252 37,264 37,272 37,280 37,288 37,296 37,304 37,312
No. 2 892,256 892,268 892,276 892,284 892,292 892,300 892,308 892,316
No. 3 3,470,384 3,470,396 3,470,404 3,470,412 3,470,420 3,470,428 3,470,436 3,470,444

Table 3
Comparison of Computational Differences between POLCG (in parallel) and MICCG (Both in Serial and in

Parallel)

MICCG (in serial) MICCG (in parallel) POLCG (in parallel)

Problem Nodes (Layers, Rows, Columns)
CPU

Time (s)
Memory

(MB)
CPU

Time (s)
Memory

(MB)
CPU

Time (s)
Memory

(MB)

1 1,024,000 (160, 160, 40) 430 91 304 91 601 91
2 40,000,000 (1000, 1000, 40) 10,627 3376 7330 3377 10,018 3389
3 100,000,000 (1000, 1000, 100) 38,981 8393 28,942 8394 24,637 8424

Test 3—Comparisons between POLCG and MICCG
For comparison, three numerical models with dif-

ferent domain size were solved using both POLCG and
MICCG. First, MICCG was used to solve the problems in
serial. Then, both POLCG and MICCG were used in par-
allel respectively with eight threads on the workstation.
The executable used was generated by the GNU FOR-
TRAN compiler 4.2 (gfortran).

Problem 1 is the TWRI_LARGE model in test 1.
Problem 2 is a model from test 2 and problem 3 is
a refined model. Comparisons are made based on the
execution time and memory required. Table 3 shows the
execution time and the memory required.

Three results could be observed from Table 3. First,
parallel POLCG can reduce the execution time compared
to serial MICCG for problem 2 and 3. Parallel POLCG
could reduce execution times about 37% compared with
serial MICCG for problem 3. Second, it is clear that
execution times using parallel MICCG are about 1.4
times faster than those using serial MICCG. Finally, the
changes of memory requirements are minor compared to
the memory taken by the models themselves. Memory
requirements of parallel POLCG are almost same as those
of parallel MICCG and there are almost no changes of
memory requirements between parallel MICCG and serial
MICCG.

These results indicate that both parallel POLCG and
partially parallel MICCG are very effective. This parallel
PCG solver is a good choice for ground water flow
problems, especially models with massive grids.

Conclusions
By specifying parallelizing compiler directives that

are ignored as comments by uniprocessor compilers,
the PCG solver package of MODFLOW is partially
parallelized using OpenMP, the de facto standard for
shared-memory parallel computing. This way, a single
version of PCG solver is used for both serial and parallel
computing, considerably reducing the human effort for
software maintenance and development.

OpenMP provides for a compact, yet powerful pro-
gramming model for shared memory programming and
is an attractive technique to reduce the execution times
arising from sophisticated MODFLOW simulations for
real-world case studies in ground water modeling. Exe-
cution times using the parallel PCG solver are typi-
cally about 1.40–5.31 times faster than execution times
using MODFLOW’s PCG2 Package. In summary, with
the increased availability of multicore processors in com-
mercial off-the-shelf hardware, the parallel PCG solver
can be an exciting tool for large-scale ground water flow
modeling.

OpenMP is designed for shared memory systems.
However, Intel’s Cluster OpenMP supports running an
OpenMP program on distributed shared memory systems
such as clusters, which are a substantial part of the parallel
computing environment. Future research directions will
involve the parallelization of the PCG solver of MOD-
FLOW on more advanced parallel computers consisting
of network architecture.

NGWA.org Y. Dong, G. Li GROUND WATER 47, no. 6: 845–850 849

Software Availability
The source code of the parallel PCG solver may be

requested free of charge via e-mail from the corresponding
author of this article (guominli@mail.iggcas.ac.cn).

Acknowledgments
We would like to thank Dr. Mary C. Hill for her

encouragement and perspective. We would also like
to thank Dr. Richard L. Naff for his help with the
research. We are grateful for review comments and
suggestions from Dr. Steffen Mehl, Dr. Yu-Feng Lin,
and the anonymous reviewer that greatly improved the
manuscript. This research was supported by Grant No.
kzcx2-yw-116 from the Chinese Academy of Sciences’
Knowledge Innovation Program. Partial support was also
provided by Grant 40672170 from the National Natural
Science Foundation of China and Research Fund for
the Environmental and Grant D07050601510000 from
Beijing Science and Technology Program.

References
Harbaugh, A.W., E.R. Banta, M.C. Hill, and M.G. McDonald.

2000. MODFLOW-2000, the U.S. Geological Survey

modular ground-water model—User guide to modulariza-
tion concepts and the Ground-Water Flow Process. U.S.
Geological Survey Open-File Report 00-92. Reston, Vir-
ginia: USGS.

Hill, M.C. 1990a. Solving groundwater flow problems by
conjugate-gradient methods and the strongly implicit
procedure. Water Resources Research 26, no. 9:
1961–1969.

Hill, M.C. 1990b. Preconditioned conjugate-gradient 2 (PCG2),
a computer program for solving ground-water flow
equations. U.S. Geological Survey Water-Resources Inves-
tigations Report 90-4048. Denver, Colorado: USGS.

Mehl, S.W., and M.C. Hill. 2001. MODFLOW-2000, the U.S.
Geological Survey modular ground-water model –User
guide to the link-AMG (LMG) package for solving matrix
equations using an algebraic multigrid solver. U.S. Geolog-
ical Survey Open-File Report 01-177. Denver, Colorado:
USGS.

OpenMP Architecture Review Board. 2005. OpenMP Applica-
tion Program Interface. Version 2.5. http://www.openmp.
org/mp-documents/spec25.pdf.

Quinn, M.J. 2004. Parallel Programming in C with MPI and
OpenMP. Beijing: McGraw-Hill and Tsinghua University
Press.

Author’s Note: We declare that we have no conflict of
interest.

850 Y. Dong, G. Li GROUND WATER 47, no. 6: 845–850 NGWA.org

