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The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously 
maintains spatial accuracy by adopting additional interior integration points, known as 
cubature points. To date, such points are only known analytically in tensor domains, 
such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral 
element method (SEM) in non-tensor domains always relies on numerically computed 
interpolation points or quadrature points. However, only the cubature points for degrees 1 
to 6 are known, which is the reason that we have developed a p-norm-based optimization 
algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new 
cubature points with all positive integration weights for degrees 7 to 9. The dispersion 
analysis illustrates that the dispersion relation determined from the new optimized 
cubature points is comparable to that of the mass and stiffness matrices obtained by exact 
integration. Simultaneously, the Lebesgue constant for the new optimized cubature points 
indicates its surprisingly good interpolation properties. As a result, such points provide 
both good interpolation properties and integration accuracy. The Courant–Friedrichs–
Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral 
element (TSEM), the TSEM with exact integration, and the optimized cubature-based 
TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the 
OTSEM. A numerical example conducted on a half-space model demonstrates that the 
OTSEM improves the accuracy by approximately one order of magnitude compared to the 
conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even 
higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a 
result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy 
of the OTSEM is also tested with a non-flat topography model. In terms of computational 
efficiency, the OTSEM is more efficient than the Fekete-based TSEM, although it is slightly 
costlier than the QSEM when a comparable numerical accuracy is required.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The spectral element method (SEM) is a spectrally accurate algorithm for solving partial differential equations (PDEs), 
which combines the geometrical flexibility of the finite element method (FEM) with the accuracy associated with the spec-
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tral method [1]. The computational domain can be divided into quadrilateral (hexahedral) [2–4] or triangular (tetrahedral) 
elements [5–8]. All variables in each element are approximated by high-order polynomials. The solution of discrete PDEs is 
obtained by using their integral forms. The diagonal mass matrix can be obtained with appropriate discretization elements 
as well as clever choice of test functions and collocation points (i.e., collocated interpolation and integration points), which 
leads to a computationally efficient method [2].

The quadrilateral spectral element method (QSEM) relies on a nodal basis derived from Gauss–Lobatto–Legendre (GLL) 
points (or the tensor products of GLL points) [2]. The GLL points have both near-optimal polynomial interpolation and 
integration (cubature) properties [9], which allow one to integrate the stiffness matrix of degree 2N − 2 exactly and to 
estimate the mass matrix of degree 2N using a high-precision quadrature rule with algebraic accuracy of 2N − 1 [9,10]. 
Simultaneously, the small Lebesgue constant of the GLL points means that they can generate a well-conditioned nodal 
basis. Although a quadrilateral grid has been successfully used, it cannot faithfully and flexibly represent extremely complex 
geometry. Compared to the quadrilateral and hexahedral elements, the triangular and tetrahedral elements are considerably 
more flexible for practical applications. Despite it is possible to divide each triangle (or tetrahedron) into four quadrilaterals 
(or hexahedra) at the expense of increasing the number of nodes per element, the quality of the resulting meshes tends to 
be poor [11]. Therefore, it seems advisable to develop a method that can be directly applied to the simplex.

Bearing highly complex geometries in mind, the SEM on triangular (tetrahedral in 3D) elements is generally preferred 
[5–8,12–17]. Unfortunately, points analogous to the GLL points in the case of triangle have not been found after 120 years 
of research on orthogonal polynomials [18]. At present, the points with an optimal polynomial interpolation and integra-
tion properties are only known analytically for an interval and their tensor products. Hence, SEM is usually confined to 
quadrilateral and hexahedral elements. For non-tensor product domains, such as triangular or tetrahedral elements, there 
is very little analytical knowledge about the location of the optimal points. This problem is still an open issue. As the GLL 
points in a one-dimensional (1D) case cannot be extended to a two-dimensional (2D) case, the diagonal mass matrix meth-
ods on the triangle always resort to numerically computed interpolation points [13,19–21], or quadrature points [14]. Until 
now, the typical methods used to find these points either optimize the interpolation nodes or the polynomial integration 
rather than both. In this sense, several attempts have been made to determine these points by minimizing the Lebesgue 
constant directly or indirectly. Chen and Babuška [20] directly minimized the Lebesgue constant. Bos [19] and Taylor et al. 
[13] chose node positions that maximize the determinant of the classical Vandermonde matrix, and the resulting nodes are 
known as Fekete points. An alternative and physically motivated approach comes from the observation of Stieltjes [22,23], 
which indicates that the roots of the Jacobi polynomials coincide with the equilibrium configuration of charges constrained 
to lie on the bi-unit interval. Hesthaven [21] extended this analogy to compute nodal distributions by seeking equilibrium 
positions of charges distributed on the triangle with line charges on the boundaries. Some explicit approaches have also 
been proposed using an easy-to-implement scheme. Warburton [24] made an explicit construction for interpolation nodes 
on a simplex whose Lebesgue constants are better than or comparable to those of the existing node sets, at least up to the 
tenth-order interpolation. Blyth et al. [25,26] obtained a Lobatto interpolation grid over the triangle by means of a sequence 
of increasingly refined grids, whose Lebesgue constants compete with those of more complicated nodal distributions. Fol-
lowing Blyth’s [25] idea, Luo and Pozrikidis [27] constructed a Lobatto interpolation grid on a tetrahedron. Pasquetti and 
Rapetti [17] reviewed the choice of interpolation nodes on the triangle.

For the optimal interpolation points on the triangle, such as the Fekete points [12,19], electrostatic points [21] and min-
imum Lebesgue constant points [20], although they are all well-conditioned interpolation nodes, the algebraic accuracy of 
the generalized Newton–Cotes integration based on these nodes reaches only degree N (i.e., the order of the Lagrange poly-
nomials on the triangle) [9,28]. This is a poor approximation of the inner products of the stiffness matrix (degree 2N − 2) 
and the mass matrix (degree 2N) for seismic wave modeling or second-order PDEs [9,10]. Therefore, the poor approximation 
to the stiffness and mass matrices using the integration formula with accuracy of degree N (i.e., the generalized Newton–
Cotes integration) is insufficient to achieve an exponential convergence [29] because the optimal interpolation points are 
only good for polynomial interpolation but not for the integration property.

To date, some attempts have been made to find a quadrature rule that can integrate a larger space. Cohen et al. [30]
made a pioneering work by enriching the polynomial space with additional interior nodes that vanish at the edges and 
vertices of the elements. They constructed the points that are analogous to the GLL points for degrees 2 and 3 on the 
triangle, which increases the integration precision and has positive integration weights. Following the similar idea, Mulder 
[31–33] obtained such points for degrees 4 to 6, and Giraldo and Taylor [9] for degrees 6 to 7. This method is the so-called 
mass-lumped method, and the integration points are called cubature points because they have higher integration accuracy 
in contrast to the optimal interpolation points. Although Giraldo and Taylor [9] gave the cubature points for degrees 6 to 
7, these points are highly unstable for seismic wavefield modeling. For this reason, they adopted a strong low-pass filter 
(i.e., erfc-log filter) to stabilize the solution at every 20 time steps. In addition, Mulder [33] pointed out that the integration 
strength given by Giraldo and Taylor [9] is too small. Furthermore, Helenbrook [34] theoretically proved the following 
property of the integration rule on the triangle: an integration rule with (N + 1)(N + 2)/2 integration nodes is not capable 
of exactly integrating the space spanned by T (2N −1) ≡ {xm yn|0 ≤ m, n; m +n ≤ 2N −1}, where N is the order of interpolant 
polynomials; the integration nodes must include three vertices, N + 1 points on each edge, and (N − 2)(N − 1)/2 points 
in the interior of the triangle. Following the Helenbrook’s work [34], Xu [35] proved that the number of inner-mode nodes 
must be greater than or equal to N(N − 1)/2 if a cubature rule with algebraic accuracy of 2N − 1 exists on the triangle. 
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This establishes a theoretical foundation for the cubature points by enriching the polynomial space with additional interior 
nodes [30].

Generally, the cubature points on the triangle must satisfy the conformity condition: the polynomials of degree N re-
quires N + 1 points on each edge of the triangular element (including vertices), which leads to 3N points on the element 
boundaries. At least (N f − 2)(N f − 1)/2 inner points are required [33] to obtain positive integration weights. Usually N f
(the order of polynomials in the interior of the triangle) larger than N (the order of polynomials on the edges) is required. 
To avoid accuracy loss after the mass lumping, a quadrature rule that can precisely integrate polynomials up to a degree 
N + N f − 2 is required, and the polynomials in the interior of the triangle should vanish on the element boundaries. The 
−2 term is due to the second-order spatial derivatives in the wave equation or second-order PDEs [33,36]. Although the 
cubature points for degrees 2 to 6 have been obtained by Cohen et al. [30,37] and Mulder [31–33], higher-order cubature 
points have not been found.

In this paper, we follow the work of Cohen et al. [30], Mulder [31–33] and Chin-Joe-Kong et al. [38] with the target of 
finding higher-order cubature points. Before addressing this work, we must first ask ourselves whether the superior accuracy 
of the higher-order FEM (or SEM) allows, or not, a reduction of the number of freedom largely enough to balance its higher 
cost. This issue has been thoroughly investigated by Jund and Salmon [39]. Although the use of higher-order cubature points 
increases the number of freedom and the use of higher-order methods decreases the Courant–Friedrichs–Lewy number 
(CFL, [40–42]), a substantial reduction in computing time can be obtained compared to lower-order schemes. Additionally, 
higher-order schemes are more efficient in terms of computational storage. Despite the inherent complexity of the FEM and 
the more restrictive stability limit for the time step, Mulder [31] already showed that the higher-order FEM is superior to 
the finite difference method (FDM) in terms of the computing time when a given numerical accuracy is required and the 
velocity model involves some non-trivial structures. Hence, higher-order cubature points are indeed attractive.

Although lower-order cubature points can be obtained analytically with the help of symbolic computing software, such 
as Maple, it does not seem to be powerful enough for higher-order cubature points [39]. Therefore, in this study, we develop 
an algorithm that can produce definitely positive integration weights with the fewest points. This work is motivated by the 
pioneering work of Cohen et al. [30] and others related to the FDM by optimizing the dispersion relation [42–47]. In this 
context, the optimization problem involves a series of nonlinear moment equations. We allow the integration weights and 
barycentric coordinates to change freely. Even though Heinrichs [48] claimed that the optimal points are not symmetrically 
arranged, we shall use the symmetry constraint to significantly decrease the number of unknowns and nonlinear equations.

2. Theory

Since the discretization of the wave equation in the application of the higher-order triangular spectral element method 
(hereafter, TSEM) can be found in many books and papers [15–17,29], here we limit ourselves to present a short review of 
the theory below.

2.1. Elastic wave equation

In isotropic heterogeneous media, the second-order elastic wave equation is given by

ρ
∂2u

∂t2
= ∇[

(λ + μ)∇ · u
] + ∇ · (μ∇u) + f , (1)

with the initial conditions{
∂
∂t u(x,0) = 0
u(x,0) = 0

, (2)

where u(x, t) is the displacement vector in Cartesian coordinates; ∂
∂t u(x, 0) is particle velocity, i.e., the first-order derivative 

of the displacement vector with respect to time; ρ(x) is the mass density; λ(x) and μ(x) are the Lamé constants; f (x, t) =
R(t)δ(x − xs) is the body force or source function located at point xs; R(t) is the source time function; and ∇ is the nabla 
operator.

Multiplying equation (1) by the time-independent test function vector w , integrating by parts and applying the Newman 
boundary condition on boundaries, we obtain the variational form of the wave equation (1) for the ith component of the 
displacement∫

Ω

ρwi
∂2ui

∂t2
dΩ +

∫
Ω

(λ + μ)
∂ wi

∂xi

∂u j

∂x j
dΩ +

∫
Ω

μ
∂ wi

∂x j

∂ui

∂x j
dΩ =

∫
Ω

wi fidΩ, (3)

where the repeated subscripts denote summation over the affected variables; and Ω is the computational domain. In addi-
tion, the free surface boundary condition can be satisfied naturally.

To solve numerically the integral equation (3), the computational domain Ω is decomposed into Ne non-overlapping 
triangular elements Ωe with the idea of applying to each element using the nonsingular mapping (x, z) = F (ξ, η), which 
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Fig. 1. Schematic diagram that illustrates the coordinate transformation. An affine transformation maps the physical domain (a) to the reference triangular 
element (b), while Duffy’s transformation maps the reference triangular domain to the standard square (c). The small filled squares represent the 10th-order 
Fekete points.

defines a transformation from the physical Cartesian coordinate system x = (x, z)T to the local reference coordinate sys-
tem ξ = (ξ, η)T defined in the unit triangle T = {(ξ, η)|0 ≤ ξ, η ≤ 1; 0 ≤ ξ + η ≤ 1} (Fig. 1). Hence, the discretization of 
equation (3) can be done element by element. The details of the discretization process can be found in [15–17,29].

2.2. Shape functions

The shape functions should possess the following property

φi(x j) = δi j, (4)

where δi j is the Kronecker delta symbol. Actually, they are also the Lagrange polynomials on the triangle that can be 
expanded as

φi(x) =
MN∑
j=1

c j
i ϕ j(x), (5)

where MN is the total number of interpolation nodes; c j
i (1 ≤ j ≤ MN ) are the unknown coefficients corresponding to 

the ith Lagrange polynomial; and {ϕ} is a set of MN polynomial functions that form a complete base of the Nth-order 
polynomial space, as will be discussed below. Substituting equation (5) into equation (4), the unknown coefficients of the 
Lagrange polynomials should satisfy the generalized Vandermonde system

V · c i = ei, (6)

where vij = ϕ j(ξi) are the entries of the generalized Vandermonde matrix V ; ei = (0, . . . , 0, 1, 0, . . . , 0)T is the ith unit basis 
vector, i.e., only unit resides in the ith position; and the superscript T represents the transpose operator. The unknown 
coefficients of the ith Lagrange polynomial are the ith column entries of the inverse generalized Vandermonde matrix V −1.

Once the solution of the linear system (6) is found, the Lagrange polynomials can be constructed by using equation (5). 
In contrast to the 1D Lagrange interpolation, both the existence and uniqueness of the solution of (6) are not guaranteed 
and taken for granted in practical applications. Also, the solution is sensitive to the choice of the orthogonal polynomial ba-
sis {ϕ}. In order to obtain a well-conditioned generalized Vandermonde matrix V , the Lagrange polynomials are constructed 
by employing a set of polynomials that enjoy orthogonal or near-orthogonal properties in the triangular spectral element 
method. Two suitable candidates are available for these polynomials, i.e., the Proriol–Koornwinder–Dubiner (PKD) [49–51]
and Appell [52,53] polynomials. Unfortunately, the condition number of the latter is significantly larger than that of the 
former [25]. Thus, the former is usually adopted. On the unit or reference triangle, the PKD orthonormal polynomial basis 
{ϕ} is defined as

ϕk(ξ,η) = 2
√

2(2i + 1)(i + j + 1) J 0,0
i

(
2ξ + η − 1

1 − η

)
J 2i+1,0

j (2η − 1)(1 − η)i, (7)

where the single index k = i + j(N + 1) + 1 depends on two indices varying as 0 ≤ i, j ≤ N; i + j ≤ N , k = 1, . . . , MN , 
being MN = (N + 1)(N + 2)/2; N is the highest order of the Jacobi polynomials; J 2i+1,0

j is the jth-order Jacobi polynomial 
that is a special case of the general Jacobi polynomial Jα,β

j with indices α = 2i + 1 and β = 0; and J 0,0
i is the ith-order 

Legendre polynomial that is a special case of the general Jacobi polynomial Jα,β

i with indices α = β = 0. As the general 
Jacobi polynomials are orthogonal in the interval [−1, 1] [49–51], we need map spectral elements from the unit triangle to 
the standard square using the Duffy’s transformation (Fig. 1){

r = 2ξ+η−1
1−η

s = 2η − 1
, −1 ≤ r ≤ 1,−1 ≤ s ≤ 1, (8)
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Fig. 2. Periodic grid for the dispersion analysis of the TSEM. The triangles are obtained by dividing one square with sides parallel to the coordinate axes into 
two isosceles triangles. (a) Fekete points for degree 7; (b) cubature points for degree 7 obtained with the algorithm developed in this study. The unevenly 
distributed small filled circles represent the distinct classes of the degrees.

where (r, s) is the point on the standard square that is mapped from the point (ξ, η) on the unit triangle. Substituting 
equation (8) into equation (7), the PKD polynomials that are on the standard square can be written as

ϕk(r, s) = 2
√

2(2i + 1)(i + j + 1) J 0,0
i (r)

(
1 − s

2

)i

J 2i+1,0
j (s). (9)

3. Effects of integration on the mass and stiffness matrices

In this study, our essential purpose is to find analogue points to the GLL points in the triangle. Therefore, we have to 
develop a quadrature rule (or numerical integration rule) that allows us to compute the mass and stiffness matrices without 
accuracy loss after mass lumping. Because the accuracy of both the mass and stiffness matrices depends on a quadrature 
rule, to this end, we first carry out a dispersion analysis in an acoustic medium (excluding the effects of Poisson’s ratio or the 
V p/V s ratio) to investigate the effects of numerical integration on the mass and stiffness matrices in the context of spectral 
element methods. As the dispersion analysis always assumes that the medium is isotropic, homogeneous, unbounded and 
source free [54–59], we start from the following source free and constant-density acoustic-wave equation

∂2 p

∂t2
= c2∇2 p, (10)

where p is the pressure field; ∂2 p/∂t2 is the second-order derivative of the pressure field with respect to time; c is the 
acoustic velocity; and ∇2 is the Laplace operator. After discretization, equation (10) becomes

Mij
∂2 P j

∂t2
+ Kij P j = 0, (11)

where P j is the pressure wavefield at the jth grid node; Mij = ∫
Ω

φiφ jdΩ is the mass matrix; and Kij = c2
∫
Ω

∇φi · ∇φ jdΩ

is the stiffness matrix. Assuming that the solution is a plane wave, then P j has the following form

P j(t) = A je
i(k·x j−ωt), (12)

where A j is the wave amplitude at the jth grid node; k is the wavenumber; x j denotes the coordinates at the jth grid 
node; and ω is the angular frequency. To merely survey the effect of the spatial discretization on numerical dispersion, we 
only carry out spatial discretization or semi-discretization. Substituting equation (12) into equation (11), we obtain

ΛMij P j = Kij P j, (13)

where Λ = ω2
h denotes the eigenvalues of the matrix M−1 K and ωh is the numerical angular frequency at which the wave 

travels across the grid. The eigenvalues of equation (13) are real and positive since the matrices M and K are symmetric 
and positive definite, as is well known [60,61]. In general, for higher-order polynomials, we will obtain more eigenvalues 
than only physical mode. The smallest eigenvalue corresponds to the physical mode [54].

For implementation, we consider isosceles triangles as spectral elements (Fig. 2). Fig. 2(a) shows the Fekete collocation 
points for degree 7. Throughout this paper, the Fekete points are taken from the work of Briani et al. [62]. Fig. 2(b) shows 
the cubature points obtained with the algorithm developed in this work. The filled circles represent the distinct classes of 
freedom. As the eigenvalue problem (13) is tackled on an unbounded domain, we solve it on the periodic grid nodes shown 
in Fig. 2 (filled circles, [54–56]) to decrease the size of the eigenvalue problem. See the paper of de Basabe et al. [54] for 
implementation details. In this regular grid, the eigenvalue problem can be formulated as

h2ΛMij P j = c2 Kij P j, (14)

where h denotes the element size; M is the mass matrix on the unit triangle; and K is the stiffness matrix with the unit 
wave velocity. In the following parts, the matrices M and K have the same meanings.
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Fig. 3. Dispersion curves using different methods for degrees 3 (a), 6 (b), 9 (c) and 12 (d). The Fekete curves (blue lines) are the results of computing both 
the mass and stiffness matrices by the generalized Newton–Cotes integration used in the Fekete-based TSEM. The curves labeled as exact M (green lines) 
and exact K (red lines) mean that only the mass matrix (M) or stiffness matrix (K ) is accurately computed by exact integration, while the other (stiffness 
or mass) matrix is computed by the generalized Newton–Cotes integration with the Fekete points as interpolation nodes. The notation of exact M&K (black 
lines) indicates that both the mass and stiffness matrices are computed by exact integration with the Fekete points as interpolation nodes. In the horizontal 
axis, k is the wavenumber and h is the element size. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

The dispersion relation is defined as the estimated (numerical) velocity of the wave traveling across the grid normalized 
by its true value in the medium [63,64]

ch

c
=

√
Λh

2πG
, (15)

where ch = ωh/k is the numerical wave velocity; Λh is the smallest eigenvalue of equation (14); and G = h/L = kh/2π is 
the sampling ratio, i.e., the ratio of the element size h to the wavelength L.

Fig. 3 shows the dispersion curves versus the sampling ratio G ∈ [0, 0.5] using different methods for degrees 3, 6, 9 and 
12. As we adopted the regular grid shown in Fig. 2(a) for the dispersion analysis, the dispersion error is maximum along 
θ = 0, where θ is the angle between the propagation direction of the acoustic wave and x-axis. For this reason, we only 
show the dispersion relation in the case of θ = 0. In each panel of Fig. 3, the Fekete curves (blue lines) are the results 
corresponding to both the mass and stiffness matrices computed by the generalized Newton–Cotes integration used in the 
conventional Fekete-based TSEM. The curves labeled as exact M (green lines) and exact K (red lines) mean that only the 
mass matrix (M) or the stiffness matrix (K ) is accurately computed by exact integration, while the other matrix (either 
the stiffness matrix or mass matrix) is calculated by the generalized Newton–Cotes integration with the Fekete points 
as interpolation nodes. The notation of exact M&K (black lines) indicates that both the mass and stiffness matrices are 
computed by exact integration with the Fekete points as interpolation nodes. In the cases labeled as the exact M and the 
exact M&K , their mass matrices are non-diagonal because of the non-collocated interpolation and integration nodes, which 
implies a depreciation of computational efficiency.

As indicated by Giraldo et al. [9] and Pasquetti et al. [16], both the mass and stiffness matrices estimated by exact 
integration can yield exponential or spectral convergence, which represents the best dispersion relation among the four 
tested methods (Fekete, exact M , exact K and exact M&K ). As can be seen, the Fekete-based TSEM presents the worst 
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dispersion relation, and the exact M shows the second worst, while the exact K simultaneously possesses good dispersion 
properties and a diagonal mass matrix. In general, the exact K method is always overwhelmingly more accurate than the 
exact M , which illustrates that an accurate estimation of the stiffness matrix is more significant than an accurate estimation 
of the mass matrix. In particular, the dispersion curves given by the exact K and the exact M&K methods for degrees 9 
and 12 are highly consistent (Figs. 3c–d). Thus, an optimized cubature formula can accurately compute the stiffness matrix 
and simultaneously estimate the mass matrix with enough accuracy (although not accurately) is the way to achieve greater 
accuracy and rapid convergence. This is the idea behind the mass-lumped scheme developed by Cohen et al. [30] and 
Mulder [31].

4. Cubature points

4.1. Requirements

As pointed out by Fried and Malkus [36], for the second-order PDEs, polynomials up to a degree q = 2N − 2 should be 
integrated exactly by numerical quadrature rule to maintain the convergence. However, this usually leads to zero or negative 
integration weights [65]. As indicated by Tordjman [65], strictly positive integration weights are needed for stability. Such 
strictly positive weights can be found if a larger space of polynomials is considered. For triangles, polynomials of maximum 
degree N f that have a restriction to the edges of at most a degree N ≤ N f can be used. This integration rule should then be 
exact for polynomials up to a degree q = N + N f − 2 to avoid accuracy loss [30] and [31]. Therefore, our goal is to find such 
integration rule or cubature formula. If the integration nodes of the cubature formula (for this reason, they are also called 
cubature points) include vertices and boundaries, then it is possible to entirely select these nodes as interpolation nodes. 
Thereby the conformity condition is met. As a result, this cubature formula leads to a fully explicit method as it produces 
a linear equation system with a diagonal structure that is trivial to invert. This procedure of obtaining a diagonal matrix 
is called mass lumping. In summary, thus cubature formula must meet the following requirements [33]: i) conformity or 
continuity of the solution across element boundaries, ii) symmetrical arrangement of nodes, iii) unisolvency, iv) no accuracy 
loss due to mass lumping, v) positive integration weights, and vi) the fewest number of nodes.

The first condition means that the shape functions have to be continuous across spectral elements, by which the cubature 
formula has to include three vertices. For the Nth-order TSEM, because the restriction on the shape functions defines a 
unique polynomial of degree N on each edge, and N + 1 nodes (including vertices) are required on each edge. Although the 
second condition, i.e., the symmetry constraint, is not necessary, it can help us reduce the number of moment equations 
and unknowns substantially [66–68]. The third condition requiring the generalized Vandermonde matrix used to construct 
the Lagrange polynomials is invertible. The fourth condition requires that the cubature formula (or cubature points) be 
able to produce spectral convergence or no loss of accuracy. This in return requires that the integration rule must precisely 
integrate polynomials up to a degree q = N + N f − 2 for the second-order PDEs, where N is the order of the polynomials on 
the edges and N f is the order of the polynomials in the interior of the triangle [30–33,36–38,65]. The fifth condition, i.e., 
positive integration weights, is necessary for the evolution of problems towards stability [69]. Among the cubature formulas 
that allow a cubature formula to satisfy all these requirements, those involving the fewest number of nodes are the most 
interesting for the efficiency in practical applications. In this paper, we will refer to the order of the TSEM as N instead 
of N f .

4.2. Objective function

To develop a cubature formula that meets the above six requirements, first of all we have to construct an objective 
function to minimize the integration error for polynomials of degrees less than q. In this study, we consider the following 
p-norm-based objective function

E =
(

ne∑
n=1

∣∣∣∣∣
MN∑
i=1

ωi Pn(xi, yi)/An − 1

∣∣∣∣∣
p)1/p

, (16)

where | · | is the absolute value operator; p is a constant; n is the index of the moment equations, 1 ≤ n ≤ ne; i is the index 
of the integration nodes; MN is the total number of integration nodes that is identical to the number of interpolation nodes; 
and ne = (q + 1)(q + 2)/2 is the number of moment equations

en =
∣∣∣∣∣

MN∑
i=1

ωi Pn(xi, yi)/An − 1

∣∣∣∣∣, (17)

where An is the exact integration of the nth-order monomial Pn(x, y) on the unit triangle; ωi is the ith integration weight; 
and (xi, yi) is the ith integration node. The meaning of the moment equation is the relative error of the integration formula 
for the nth-order monomial.

As the optimization problem (16) is highly nonlinear, it is difficult to solve it when q is large. In order to overcome this 
difficulty, we consider the symmetry constraint on cubature points to decrease the number of the unknowns. As pointed 
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Table 1
Six equivalent node classes in the triangular element. nci is the number of nodes in the ith node class. The number of the unknowns in the ith node class 
is listed in the fourth column. The position of nodes in the ith node class is listed in the fifth column.

Class Node nc Unknowns Type

1 (0, 0) 3 1 vertices
2 (1/2, 0) 3 × 1 1 edge midpoints
3 (α, 0) 3 × 2 1 + 1 interior edge points

4 (1/3, 1/3) 1 1 center
5 (β , β) 3 1 + 1 interior
6 (δ, γ ) 6 2 + 1 interior

out by Keast et al. [66] and Keast [67,68], the symmetric cubature formula just needs to restrict the monomials P (x, y) to 
those of the form

Pl,m(x, y) = (xy)l(1 − x − y)m, (18)

being {
0 ≤ 2l + m ≤ q
0 ≤ m ≤ l

. (19)

This further reduces the number of moment equations under this condition. Therefore, objective function (16) becomes

E =
(

ne∑
n=1

∣∣∣∣∣
6∑

i=1

Ri∑
j=1

υ2
i, j

nci∑
k=1

Pl,m(xi, j,k, yi, j,k)/An − 1

∣∣∣∣∣
p)1/p

, (20)

where ne is the number of moment equations under the condition (19); here, i is the index of the node class; υ2
i, j = ωi, j

is the integration weight to guarantee a positive value; the superscript Ri is the number of the ith node class, and the 
respective numbers of all these node classes form the so-called integration rule pattern (or integration rule structure), i.e., 
R = (R1, R2, . . . , R6)

T , (for the detailed definition of the rule pattern please see the next subsection); nci is the number 
of nodes in Ri (the corresponding value is listed in Table 1); the total number of the ith (node) class is nci · Ri , being 
nc = (3, 3, 6, 1, 3, 6); and j is the index of the rule pattern. Under the condition (19), the exact integration of the monomial 
(18) on the unit triangle is

An =
1∫

0

dx

1−x∫
0

dy Pl,m = (l!)2m!
(2l + m + 2)! . (21)

Usually, N f is larger than N , which gives the cubature formula a chance to obtain higher integration accuracy and pos-
itive integration weights. On the unit triangle T = {(x, y)|0 ≤ x, y ≤ 1; 0 ≤ x + y ≤ 1}, the space of the interior polynomials 
can be expressed by P N f −3 × [b], being [b] the subspace generated by the bubble function b = xy(1 − x − y) and P N f −3 the 
PKD polynomial of degree N f − 3. On the three boundaries, the boundary polynomials P N can be spanned by the product 
of the functions x(1 − x − y), xy and y(1 − x − y) by the PKD polynomial of degree N − 2. Thus, the total space of the 
Lagrange polynomials consists of P N ⊕ P N f −3 × [b]. After determining the interior and boundary polynomials, the Lagrange 
polynomials can be constructed by using equation (5). Therefore, the total number of nodes increases from (N +1)(N +2)/2
in the standard element to 3N + (N f − 2)(N f − 1)/2.

4.3. Rule pattern

Keeping the symmetry constraint in mind, the solution of the nonlinear optimization problem (20) consists of six node 
classes in the triangular element. Consequently, we should first determine an integration rule pattern. As mentioned in 
the previous section, the numbers of each node class R comprise the rule pattern, i.e., R = (R1, R2, . . . , R6)

T . In any case, 
R1 = 1 since three vertices of the triangle must be included for conformity. Thus, the total number of nodes corresponding 
to the first class is 3 × 1 = 3 (i.e., the three vertices). If and only if N is even R2 = 1 and the total number of nodes 
corresponding to the second node class 3 × 1 = 3 (i.e., the three midpoints on each edge), otherwise R2 = 0. R3 = [ N−1

2 ], 
where [ ] represents the integer-valued function. However, the values of R4, R5 and R6 depend on N f so that they must 
satisfy the condition R4 + 3R5 + 6R6 ≥ (N f − 2)(N f − 1)/2, which ensures that the order of polynomials in the interior of 
the triangle is at least N f .

These node classes, together with the number of nodes in each class, the location of the nodes, and the number of 
unknowns are listed in Table 1. The first, second and fourth classes have only one unknown, i.e., one integration weight. 
The third class has two unknowns, i.e., one nodal coordinate α and one integration weight. The fifth class also has two 
unknowns, i.e., one nodal coordinate β and one integration weight. The sixth class has three unknown, i.e., two nodal 
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Table 2
All equivalent nodes for the six node classes considered previously (listed in Table 1).

Class Unknowns Node coordinates

1 – (0, 0) (0, 1) (1, 0) – – –
2 – (1/2, 0) (0, 1/2) (1/2, 1/2) – – –
3 α (α, 0) (0, α) (1 − α, 0) (0, 1 − α) (α, 1 − α) (1 − α, α)

4 – (1/3, 1/3) – – – – –
5 β (β , β) (1 − 2β , β) (β , 1 − 2β) – – –
6 δ, γ (δ, γ ) (γ , δ) (δ, 1 − δ − γ ) (1 − δ − γ , δ) (γ , 1 − δ − γ ) (1 − δ − γ , γ )

coordinates (δ, γ ) and one integration weight. Only one node in each class have to be listed because the others can be 
easily enumerated since they are symmetrically arranged [33]. The details can be seen in Table 2. Given a rule pattern R , 
the total number of integration nodes is

MN = nc1 R1 + nc2 R2 + nc3 R3 + nc4 R4 + nc5 R5 + nc6 R6. (22)

Correspondingly, the total number of unknowns is

nu = R1 + R2 + 2R3 + R4 + 2R5 + 3R6. (23)

For example, if we take fourth-order cubature points, N = 4, and being R = (1, 1, 1, 0, 2, 0), the total number of integra-
tion nodes is 18, while the total number of unknowns is 8. Analogously, if we take fifth-order cubature points, N = 5, and 
being R = (1, 0, 2, 0, 3, 1), the total number of integration nodes is 30, while the total number of unknowns is 11.

4.4. Nonlinear conjugate gradient method

At present, the cubature points in the triangle are known for degrees 1 to 6 [30–33,36–38,60]. For low-order cases, this 
system can be solved manually. However, in general, a numerical algorithm seems to be the only option for higher-degree 
elements. In this study, we will use a nonlinear conjugate gradient (CG) method to solve the nonlinear optimization problem 
(20) for degrees higher than 7. With this purpose, we adopt the following DY version nonlinear CG method [70]⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
βk = max

{
0,

gT
k gk

dT
k−1 yk−1

}

dk =
{ −gk, k = 1

−gk + βkdk−1, k > 1
xk+1 = xk + αkdk

, (24)

where k is the iteration index; gk is the Jacobian vector or gradient at the kth iteration; dk is the descent direction; 
yk−1 = gk − gk−1 is the gradient change; xk is the solution; and αk is a step-length obtained by linear search [71]. The 
way of choosing the parameter β leads to distinct versions of the nonlinear CG methods. Although different versions of CG 
update parameters β have been developed to date [72,73], the DY version seems to us the fastest and most effective for 
addressing the optimization problem (20) according to our numerous tests. To obtain the best solution, we compute the 
analytical gradient of objective function (20) with respect to the unknowns.

For each degree N , we first solve the optimization problem (20) using the DY version nonlinear CG method (24). The 
stopping criterion is whether the cubature formula can precisely integrate polynomials up to a degree q under the condition 
of the maximum relative error ε ≤ 10−9, being

ε = max
1≤n≤ne

∣∣∣∣∣
6∑

i=1

Ri∑
j=1

υ2
i, j

nci∑
k=1

Pl,m(xi, j,k, yi, j,k)/An − 1

∣∣∣∣∣. (25)

This condition is called the precision condition.

4.5. Initial solution

Since the local optimization methods depend strongly on the initial solution, the selection of this initial solution is 
significant for calculation purpose. Therefore, we initially use the symmetric nodes given by Warburton [24] and Blyth et al. 
[25] as the initial distribution of integration nodes. Once the initial nodal coordinates are set, the initial integration weights 
are obtained from the following overdetermined equation system

6∑ Ri∑
υ2

i, j

nci∑
Pl,m(xi, j,k, yi, j,k) = An. (26)
i=1 j=1 k=1
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It is noteworthy that the square root of the integration weight is updated instead of the integration weight itself, which 
ensures a positive integration value and expands the solution space. Although the final solution of (20) with the GLL points 
on boundaries is appealing because it can couple with the quadrilateral SEM, we cannot obtain such cubature rule that 
satisfies the precision condition (25).

4.6. Stability condition

To select the best final solution among all those that satisfy the precision condition (25), another criterion is that the 
solution must has the largest CFL number in addition to the fewest number of nodes. By recovering the source-free and 
constant-density acoustic-wave equation and after discretization of the temporal derivative in (11) by the second-order 
leapfrog scheme, we obtain the following eigenvalue problem

4
sin2(ωh�t/2)

�t2
h2Mij P j = c2 Kij P j . (27)

The CFL number is defined as [54]

p = �t · cmax

hmin
, (28)

where cmax denotes the maximum velocity and hmin denotes the minimum element size. Thus, substituting equation (28)
into equation (27), we obtain

p

2

√
Λ = sin2(ωh�t/2) ≤ 1, (29)

where Λ is the eigenvalue of the matrix M−1 K . The CFL number becomes

p ≤ C F L = min

(
2√
Λ

)
= 2√

Λmax
, (30)

where Λmax is the maximum eigenvalue. The larger the CFL number, the larger the time interval �t is allowed.

4.7. Consistency condition

The nonlinear optimization problem derived from the objective function (20) is difficult to solve, especially for higher-
order cases because the system is highly nonlinear with respect to the parameters. In these cases, the solvability of the 
system can help us determine a rule pattern to find potential solutions. The requirement is that the number of the moment 
equations (ne) does not exceed the number of unknowns (nu ), i.e., nu ≥ ne [33,38]. This results in a set of inequalities that 
is called the consistency condition [38]. Although this condition is necessary and sufficient for the linear independence of 
the equations of the system, it is neither necessary nor sufficient for the existence or/and uniqueness of the solution of the 
nonlinear equation system [38]. Even though the consistent systems that satisfy consistency condition may fail to obtain so-
lutions, while inconsistent systems may still have solutions due to peculiar degenerations of the nonlinear terms. However, 
this consistency condition provides a good starting point for a systematic search of possible solutions because it significantly 
narrows the range of admissible solutions.

4.8. Solving process

For a given order N , we first give a rule pattern and start from the standard element (i.e., N f = (N − 2)(N − 1)/2) to 
solve the optimization problem (20). We then try all possible rule patterns that satisfy the consistency condition nu ≥ ne
and solve the optimization problem (20) using the nonlinear CG method (24). Once the solutions satisfying the precision 
condition (25) are found, we choose the solution that involves the fewest number of nodes and the largest CFL number 
[40,41] as the final solution. Otherwise, we increase N f and try all possible rule patterns until success is achieved. We 
repeat this process for each given degree N . Although this solving process of nonlinear optimization is rather exhausting, 
the solution is found once and for all.

4.9. Form of functionals

As for the form of the objective function, we first tried the commonly used maximum norm, L1-norm (the least-absolute-
value norm), as well as L2-norm (the least-squares norm). Unfortunately, the solution obtained by these functionals does 
not satisfy the stopping criterion or the precision condition (25) even after ten million iterations; only the p-norm objective 
function (20) provides a desirable solution according to the precision condition within ten thousand iterations. Lastly, after 
several trials and experiments, we found that p = 3 is the most efficient option for this parameter. In this study, we obtain 
new cubature formulas in the triangle for degrees 7 to 9. Although Jund and Salmon [39] also attempted a CG method-based 
numerical algorithm to obtain a cubature formula, they did not succeed. We attribute our success to the choice of the form 
of the objective function, the version of the nonlinear CG method and the initial solution.
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Table 3
Rule patterns for the polynomials of degrees 7 to 9 on the triangle. N is the degree on the edges; and N f is the degree in the interior of the triangle. The 
integration is exact up to a degree q. R is the number of each node class. The number of equations and unknowns (the square root of integration weights 
together with the position parameters) are ne and nu , respectively. The total number of nodes or degrees of freedom is MN .

N N f q R ne nu MN

1 2 3 4 5 6

7 10 15 1 0 3 0 4 4 27 27 57
8 11 17 1 1 3 0 5 5 33 33 69
9 12 19 1 0 4 1 4 7 40 39 82

Fig. 4. Distributions of the cubature points for degrees 7 (a), 8 (b), and 9 (c).

5. Optimized cubature formulas

The cubature formulas for degrees 1 to 6 are listed in the paper of Cohen et al. [30,37] and Mulder [32,33]. Now, we 
obtain three new cubature formulas on the triangle for degrees 7 to 9 using the p-norm-based optimization algorithm in 
section 4.2. The maximum relative errors according to the precision condition (25) are 3.66 × 10−15, 5.11 × 10−14 and 
4.68 × 10−10, respectively. These rule patterns are listed in Table 3. The integration weights and nodal position parameters 
are tabulated in Table 4. For each node class, only one equivalent node and corresponding integration weight are listed. 
Fig. 4 shows the distribution of the new cubature points for degrees 7 to 9. In general, the integration nodes concentrate 
toward edges and vertices of triangles. Even though the consistency condition nu ≥ ne can serve as a guide to find a potential 
solution, we still obtain a solution for degree 9 that violates the consistency condition (see Table 4).

In Table 5, we tabulate the CFL numbers of the Fekete-based TSEM, the cubature-based TSEM, and the TSEM based 
on the exact M&K method for degrees 1 to 9, respectively. For the second-order Fekete-based TSEM, the mass matrix is 
not invertible because of zero integration weights at the vertices of the triangle; the eighth- and ninth-order are unstable 
because of the negative integration weights. In contrast to the Fekete-based TSEM, the cubature-based TSEM always involves 
positive integration weights. In terms of the CFL number, the cubature-based TSEM yields slightly smaller CFL number 
compared to the Fekete-based TSEM because of the adoption of additional interior nodes. Obviously, the exact M&K method 
possesses the largest CFL number, which represents the best case. In particular, for the first-order Fekete-based TSEM, the 
CFL number is 

√
2/2, which is identical to that given by the first-order FDM [63] because the grid in the former is the same 

as that in the latter.

6. Analysis of the optimized cubature formulas

In this section, we analyze the characteristics of the optimized cubature formulas with respect to the dispersion relation 
and the interpolation property.

6.1. Dispersion analysis

In order to check the effectiveness of the optimized cubature formulas, we perform a dispersion analysis using the 
acoustic-wave equation just as we did in section 3. To analyze the numerical dispersion, we adopt the regular grid shown 
in Fig. 2(b). The angle between the propagation direction of the acoustic wave and x-axis is θ . In Fig. 5, we show the 
dispersion curves versus the sampling ratio G ∈ [0, 0.5] for degrees 5, 7, 8 and 9, respectively. In each panel, the blue lines 
represent the results obtained by the Fekete-based TSEM; the red lines represent the results obtained by the optimized 
cubature-based TSEM; and the black lines represent the results obtained by the exact M&K method, i.e., computing both 
the mass and stiffness matrices by exact integration and taking the Fekete points as interpolation nodes. In general, the 
numerical dispersion becomes increasingly small as the order of polynomials increases. It is obvious that the exact M&K
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Table 4
Integration weights and node position parameters for each node class (fifth and sixth columns, respectively). N is the degree on the edges; and N f is 
the degree in the interior of the triangle. The integration is exact up to a degree q. For each node class, only one of the integration weights and position 
parameters are listed, while other equivalent nodes can be numerated according to Table 2. The Courant–Friedrichs–Lewy (CFL) numbers are listed in the 
seventh column.

N N f q Class Position parameters Weight CFL

7 10 15 1 – 0.285938013608177422908429576864364207722246647e−3 0.0124
3 0.754072058584607102238450693221238907426595688e−1 0.121706011018912698025407070900882899877615273e−2

0.214794118323259342062669929873663932085037231 0.197034042387475788818407274050059641012921929e−2
0.399642192575304366908284237069892697036266327 0.240053615532905689766707268972822930663824081e−2

5 0.383120054623794434323080793092231033369898796e−1 0.492215573731151316561049924303006264381110668e−2
0.116397886866850333587031229853892000392079353 0.851990247875026099344530905455030733719468117e−2
0.279307735447201610501366531025269068777561188 0.241856163528129629314289417152394889853894711e−1
0.478025598639183535443208938886527903378009796 0.134953161703328574499982650536367145832628012e−1

6 0.409329514288468490623706941278214799240231514e−1 0.867539511337682596459064399141425383277237415e−2
0.144254257323076784391702176435501314699649811
0.434090217167561187583402215750538744032382965e−1 0.122954988026494904662655471838661469519138336e−1
0.297304391665864531368868028948782011866569519
0.137319922220177192961898526846198365092277527 0.144534568329972440414721290835586842149496078e−1
0.228970345201234104504095512311323545873165131
0.141839673860176623820805730247229803353548050 0.166165815185089840722021392593887867406010628e−1
0.360262246435312905035175390366930514574050903

8 11 17 1 – 0.189970792242421539740282465658083310700021684e−3 0.0078
2 – 0.174615638855299577791857501551930909045040607e−2
3 0.626469034050353423825896470589214004576206207e−1 0.821801497801303583966292531926001174724660814e−3

0.181221884992308013284656453834031708538532257 0.125450892143815829517239368584569092490710318e−2
0.330294406902804149606112105175270698964595795 0.161988566731149376785869886674618101096712053e−2

5 0.312349045401441142988385735179690527729690075e−1 0.334317342574548970884906751166454341728240252e−2
0.910013339870765075589886805573769379407167435e−1 0.635309112044524747220375360257094143889844418e−2
0.233132130487337080326781801886681932955980301 0.183579445422039459756557988612257759086787701e−1
0.380429163398841807541828075045486912131309509 0.207792521384157422015270810788933886215090752e−1
0.440932572285039681148077761463355273008346558 0.124318436873909581030783755295487935654819012e−1

6 0.310037109163131020805881377100376994349062443e−1 0.561914616699831989676816590417729457840323448e−2
0.122080239720277691772842842965474119409918785
0.355500409795113728184112744656886206939816475e−1 0.837327223534249133474194337622975581325590611e−2
0.248940832083801522056631938539794646203517914
0.364303174761924850044714219166053226217627525e−1 0.966444869131471290257806572299159597605466843e−2
0.401001502853972513484848150255857035517692566
0.111407785668366066111900636315112933516502380 0.112198688380590588103968840982815891038626432e−1
0.192492256098120900764669727323052939027547836
0.118802938061065621599965425048139877617359161 0.131596852675670977772526271110109519213438034e−1
0.316103546691238412869040530495112761855125427

9 12 19 1 – 0.120448081380424015665933645813368002563947812e−3 0.0047
3 0.458329698846264149691975831046875100582838058e−1 0.529499985956480311889704726269201273680664599e−3

0.140404487546879924719789300979755353182554245 0.953463885494742731732675800060405890690162778e−3
0.277335077044109423738404984760563820600509644 0.117273478268394492837756182268549309810623527e−2
0.424448030981071589007314059927011840045452118 0.130490441453531076827776491455779250827617943e−2

4 – 0.181633676628870331659637571419807500205934048e−1
5 0.264500206705133023010745318970293737947940826e−1 0.220071155442234283119984361576371156843379140e−2

0.881199152586077810722642311702657025307416916e−1 0.502801032369663836174566995396162383258342743e−2
0.196370316936668592999737370519142132252454758 0.137111414302799571041102666413280530832707882e−1
0.484203915186072919585313911738921888172626495 0.760022890412425083245251400398956320714205503e−2

6 0.284681282201876273418861273967195302248001099e−1 0.602083610239412779507883755059083341620862484e−2
0.206864138209570891380195689635002054274082184
0.288170962299329480593712560221320018172264099e−1 0.428712442664368025002641360288180294446647167e−2
0.960856551044226847579921013675630092620849609e−1
0.309204996631560480313538619157043285667896271e−1 0.722146654942792173142995793000409321393817663e−2
0.340792271649894007445880106388358399271965027
0.937329383496212226178911919305392075330018997e−1 0.842295866408316468154637846055265981703996658e−2
0.173951851241586602503375047490408178418874741
0.995074826620584718117612510468461550772190094e−1 0.105192909983540215657082939060273929499089718e−1
0.285979843485077434017682662670267745852470398
0.102583520831418611995999867758655454963445663 0.910160384832466896887215312972330139018595219e−2
0.400494088948505688740908681211294606328010559
0.205236727216005221396954993906547315418720245 0.164419515993636487782847410699105239473283291e−1
0.325886121046975840709336580403032712638378143
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Table 5
CFL numbers of the Fekete-based TSEM, cubature-based TSEM, and TSEM based on the exact M&K for degrees 1 to 9. The symbol ‘∗’ denotes a non-
invertible mass matrix because of zero integration weights, while the symbol ‘−’ represents instability because of negative integration weights.

Degree 1 2 3 4 5 6 7 8 9

Fekete 0.7071 ∗ 0.1256 0.0578 0.0499 0.0174 0.0153 – –
Cubature 0.7071 0.1765 0.1052 0.0553 0.0242 0.0163 0.0124 0.0078 0.0047
Exact M&K 0.4084 0.2358 0.1084 0.0743 0.0520 0.0397 0.0305 0.0247 0.0200

Fig. 5. Dispersion curves using the different methods for degrees 5 (a), 7 (b), 8 (c) and 9 (d). The Fekete curves (blue lines) are the results of computing the 
mass and stiffness matrices by the generalized Newton–Cotes integration used in the Fekete-based TSEM. The curves labeled ‘cubature’ (red lines) indicate 
that both the mass and stiffness matrices are computed by the cubature formulas. The notation of exact M&K (black lines) indicates that both the mass 
and stiffness matrices are computed by exact integration with the Fekete points as interpolation nodes. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

method provides the best result for any of the tested degrees (Figs. 5c–d). Compared to the generalized Newton–Cotes 
integration used in the Fekete-based TSEM, the numerical dispersion obtained by the cubature-based TSEM consistently 
approaches the best case (exact M&K ). This demonstrates that the optimized cubature points produce a good numerical 
dispersion, as expected, which has its counterpart in a substantial improvement of accuracy.

6.2. Interpolation property

So far, we have only paid attention to the accuracy of integration, but what about the interpolation property? In this 
section, we compute the Lebesgue constant of the optimized cubature points for degrees 1 to 9. As mentioned above, the 
cubature points for degrees 1 to 6 are given by Cohen et al. [30,37] and Mulder [31–33], while the points for degrees 7 to 
9 are obtained by the algorithm developed in this study. The Lebesgue constant on the triangle is defined as [26]

LMN = max LMN (x), (31)

x∈T
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Table 6
Number of nodes in each spectral element related to the Fekete points and cubature points for degrees 1 to 9.

Degree 1 2 3 4 5 6 7 8 9

Fekete 3 6 10 15 21 28 36 45 55
Cubature 3 7 12 18 30 46 57 69 82

Fig. 6. Lebesgue constants versus the square root of the number of nodes (or degrees of freedom) using the Fekete points and cubature points as interpola-
tion nodes for degrees 1 to 9. The line connecting the circles makes reference to the Fekete points, while the line connecting the squares makes reference 
to the ‘cubature’ points.

where x lies on the unit triangle T ; and LMN (x) is the Lebesgue function

LMN (x) =
MN∑
i=1

∣∣φi(x)
∣∣. (32)

The Lebesgue constant is a measurement of the interpolation property. The smaller the value, the better the interpolation. 
If the Lebesgue constant is extremely large, the interpolation function will undergo large oscillations between interpolation 
nodes, such as in the uniform distribution of nodes. As in this case, the Lebesgue constant increases rapidly with the order 
of the interpolation polynomials N due to Runge effects, such nodal distribution is suitable only for low-order polynomial 
expansions, typically for N ≤ 3 [25]. As a result, the solution of the wave equation via TSEM will depreciate. As indicated 
by Taylor et al. [12], the numerical evidence suggests that the upper bound of the Lebesgue constant is proportional to √

MN . Fig. 6 shows the Lebesgue constants of the Fekete points and cubature points versus the square root of the number 
of nodes (degrees of freedom) 

√
MN for degrees 1 to 9. Fortunately, the Lebesgue constant of the cubature points shows 

an overall consistent trend with respect to that of the Fekete points. This demonstrates that the three new optimized 
cubature formulas have an interpolation property similar to that given by Cohen et al. [30,37] and Mulder [31–33]. Thus, 
the optimized cubature formulas provide both high-quality quadrature and well-conditioned interpolants. Generally, the 
Lebesgue constant of the cubature points is somewhat larger than that of the Fekete points when the number of nodes on 
the edges is identical, which is due to more nodes existing in the interior of the triangle. The total numbers of the Fekete 
points and cubature points for degrees 1 to 9 are tabulated in Table 6.

7. Numerical examples

Next, we want to verify two relevant aspects of the TSEM based on the new optimized cubature formulas, i.e., the 
convergence and efficiency. We adopt it to solve the second-order elastic wave equations (3). The temporal derivative is 
discretized by the second-order leapfrog scheme.

7.1. Convergence

We consider Lamé’s problem (see Khun [74] for details) to verify the convergence with the new cubature points. In the 
following, we refer to the conventional Fekete-based triangular SEM as TSEM, and to the optimized cubature-based TSEM 
as OTSEM. The reference model is a homogeneous half-space with a size of 2 km × 1 km, where the P-wave velocity is 
2.0 km/s, the S-wave velocity is 1.15 km/s, and the density is 2.0 g/cm3, which corresponds to a Poisson’s ratio value of 
0.253. The top boundary is the free surface, and we apply 0.1 km thick (two spectral elements) perfectly matched layers 
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Fig. 7. Meshes conforming a half-space model: (a) by means of triangular elements or (b) square elements, which are used by the TSEM and QSEM, 
respectively. The pentagrams represent the seismic source located at the point (1.0 km, −0.05 km), while the inverted triangles represent receivers located 
at the point (1.8 km, 0 km). The shaded domains represent the perfectly matched layers (PMLs).

(PMLs) [75] to suppress spurious reflections from artificial boundaries [10,76]. The model is discretized by isosceles right 
triangles, being the element size 50 m, which leads to a total number of 2 × 44 × 22 = 1936 spectral elements (including 
PMLs). Three control points in each triangle are enough to delineate the model. The mesh used for computation with the 
TSEM and OTSEM is shown in Fig. 7(a), where the shaded bands are PMLs. The pentagram denotes the seismic source, while 
the inverted triangle denotes a receiver for further analysis. The point source is located at the point (1.0 km, −0.05 km) 
and consists of a vertical force simulated by a Ricker wavelet with a dominant frequency of f0 = 25 Hz and an onset time 
of t0 = 1/ f0. Here, we intentionally take a slightly high dominant frequency of the seismic source to avoid the accuracy 
saturation for high-order schemes. The receiver is deployed exactly on the surface at a horizontal distance of 0.8 km from 
the source to record the vertical and horizontal displacement components with a record length of 2.5 s. Both the mass and 
stiffness matrices are precomputed and sparsely stored to improve the computational efficiency [10].

Bearing the CFL number (28) and the values given in Table 5 in mind, the allowable time interval is �t ≤ CFL·hmin
cmax

. 
Although Jund and Salmon [39] suggested that higher-order discretization in time has to be coupled with higher-order 
discretization in space to avoid loss of accuracy and convergence. Here, we adopt the second-order leapfrog scheme with 
an extremely small time step. In this experiment, we take half the maximum allowable time interval as time step, which 
makes the error generated by temporal discretization negligible.

To check the accuracy of the OTSEM, we first use the following L2-norm and maximum-norm function to investigate 
the computation error of the numerical solutions calculated at the receiver point (1.8 km, 0 km) (the triangle in Fig. 7a). In 
the next section, in order to check the accuracy of the OTSEM, we use the L2-norm together with the maximum-norm to 
obtain the error of the numerical solutions obtained by other family methods at the same receiver point. The L2-norm-based 
numerical error is estimated as [77]

‖e‖L2 = [∑nt
i=0(uh

i − ua
i )

2/(nt + 1)]1/2

max0≤i≤nt |ua
i |

, (33)

and the maximum-norm-based numerical error can be defined as

‖e‖max = max0≤i≤nt |uh
i − ua

i |
max0≤i≤nt |ua

i |
, (34)

where nt is the total number of time steps within the considered time window; and uh
i and ua

i denote the numerical and 
analytical solutions [78] at the ith time step located at the receiver, respectively. To eliminate the numerical error due to 
PMLs, the above numerical errors are counted from time t = 0 s up to the time where the earliest spurious reflection just 
arrives at the receiver. Here, we select seismic records between 0 s and 1 s for the error statistics.

The L2-norm-based computation errors obtained with the OTSEM versus the order of polynomials on the edges 
(1 ≤ N ≤ 9) are plotted in Fig. 8. The maximum-norm-based computation errors follow a similar trend and are not shown 
in the illustration. The solid lines joining the squares in each plot show the errors associated with the horizontal (Fig. 8a) 
and vertical (Fig. 8b) displacement components, respectively. We also compute the slope of each line using the least-squares 
method to obtain the convergence rate. The dashed lines show the corresponding regression lines for the horizontal and 
vertical displacement components in semi-logarithmic coordinates. The slopes of these regression lines are −1/2 approx-
imately, which is consistent with those (slope of −1/2) obtained by Mulder [33]. This supports that the OTSEM yields a 
comparable convergence compared to that reported by Cohen et al. [30,37] and Mulder [31–33].

7.2. Computational efficiency

In this section, we investigate the computational efficiency of the OTSEM against the conventional Fekete-based TSEM 
for degrees 7 to 9. Table 6 gives the number of nodes in each spectral element for the Fekete points (TSEM) and optimized 
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Fig. 8. L2-norm computation errors estimated by the optimized cubature points-based TSEM (OTSEM) versus the order of the polynomials on the edges 
(N) for degrees 1 to 9. The solid lines joining squares in (a) and (b) show the computation errors associated with the horizontal and vertical displacement 
components, respectively. The dashed lines show the corresponding regression lines in semi-logarithmic coordinates, respectively.

cubature points (OTSEM). It is obvious that the latter uses more nodes than the former when the order of polynomials 
on the edges, i.e., N , is identical. However, in terms of accuracy, the TSEM cannot compete with the OTSEM with same N . 
Indeed, the comparison of the computational efficiency among methods is meaningful only if it is carried out under the 
condition of a comparable number of nodes in each case. Consequently, the efficiency of the OTSEM against the TSEM is 
investigated under this condition. Usually, a higher-order TSEM is compared with a lower-order OTSEM. The model remains 
the same as before, i.e., a homogeneous isotropic half-space. Now we use a Ricker wavelet with a dominant frequency of 
15 Hz. The other parameters are identical to those listed in section 7.1. We also compute the numerical solution with the 
quadrilateral SEM (QSEM) for comparison. The mesh used for computation with the QSEM is shown in Fig. 7(b). As before, 
the shaded bands represent PMLs. The model is discretized by squares whose size remains 50 m, which leads to a total 
number of 44 × 22 = 968 spectral elements (including PMLs). Taking computational efficiency into consideration, we now 
adopt the maximum allowable time interval that satisfies the stability condition (CFL number) as time step.

Fig. 9 shows the snapshots of the vertical displacement component at t = 0.75 s obtained by the 10th-order TSEM, 
14th-order TSEM, 7th-order QSEM and 7th-order OTSEM, respectively. Compared to Figs. 9(c)–(d), Fig. 9(a) reveals an obvious 
numerical dispersion, while the 14th-order TSEM (Fig. 9b) produces a result comparable to those obtained by the 7th-order 
QSEM (Fig. 9c) and 7th-order OTSEM (Fig. 9d). This highlights that the accuracy of the conventional TSEM is considerably 
lower if it is compared with the accuracy of the QSEM and OTSEM. Although in all cases the same PMLs boundary conditions 
are applied to three boundaries of the model, unlike Fig. 9(d), Figs. 9(a)–(c) exhibit clear spurious artificial reflections coming 
from the bottom boundary, what stands out even more the good behavior of the OTSEM.

Synthetic seismograms of the vertical displacement component obtained by different methods and degrees N are shown 
in Fig. 10 (left plot). The seismograms refer to seismic records from a receiver located at the point (1.8 km, 0 km) as 
seen in Fig. 7. In all cases, the analytical solution [78] is computed to compare with the numerical solutions. We present 
a zoomed view of all these seismic records within the time window [0.4 s, 1.1 s] for an easier comparison. On the left 
column, we show the real amplitudes of seismic records obtained by the 7th-, 8th- and 9th-order QSEM and OTSEM, which 
are compared to those obtained by the 10th-, 12th- and 14th-order TSEM, respectively. For comparison, these methods are 
divided into three groups with a more or less comparable number of nodes. All seismic records that almost superimpose on 
the analytical solution reflect the consistency between the numerical solution and analytical solution, while the differences 
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Fig. 9. Snapshots of the vertical displacement component at t = 0.75 s. Panels (a), (b), (c) and (d) show the snapshots obtained by the conventional 
10th-order TSEM, 14th-order TSEM, 7th-order QSEM and 7th-order OTSEM, respectively. Acronyms: TSEM, Fekete points-based triangular SEM; QSEM, 
quadrilateral SEM; OTSEM, optimized cubature points-based triangular SEM. The pentagrams represent the seismic source, while the inverted triangles 
represent the receiver. The letter R indicates the Rayleigh wave and the letter P indicates the P wave.

Table 7
Statistics of computation errors associated with the horizontal and vertical displacement components depending on the used method and degree N (half-
space model). The symbols emax and eL2 denote the errors determined by maximum-norm and L2-norm, respectively. MN denotes the total number of 
nodes (or degrees of freedom) in each triangular element.

Group Method x-component z-component MN

emax eL2 emax eL2

Group1 10th order TSEM 9.552e−2 1.423e−2 1.068e−1 1.740e−2 66
7th order QSEM 4.330e−3 6.899e−4 7.621e−3 1.104e−3 64
7th order OTSEM 9.710e−3 1.343e−3 9.538e−3 1.527e−3 57

Group2 12th order TSEM 4.236e−2 6.402e−3 4.764e−2 7.444e−3 91
8th order QSEM 3.409e−3 4.139e−4 4.841e−3 7.009e−4 81
8th order OTSEM 2.796e−3 4.856e−4 3.166e−3 5.721e−4 69

Group3 14th order TSEM 4.112e−2 6.469e−3 4.601e−2 7.527e−3 120
9th order QSEM 2.120e−3 7.350e−4 4.261e−3 6.454e−4 100
9th order OTSEM 1.389e−3 2.822e−4 2.963e−3 4.484e−4 82

lie in the errors. The computation errors mainly come from the Rayleigh wave due to its shorter wavelength compared to 
the P-wave. These errors, which are calculated by subtracting the analytical solution from the numerical solution, are also 
shown within the same time window in Fig. 10 (right plots). From these curves, it is clear that the errors from both the 
QSEM and OTSEM decrease rapidly with the increasing order of polynomials N , while the error from the TSEM decreases 
very slowly. Obviously, the accuracy of the OTSEM and QSEM is comparable, but the accuracy of the TSEM is significantly 
low (about a factor 10). This supports that the optimized cubature points can greatly improve the accuracy of the TSEM.

Table 7 lists the computation errors associated with the horizontal and vertical displacement components depending on 
the used method and degree N . The symbols emax and eL2 denote the maximum-norm and L2-norm errors, respectively. 
The errors are estimated within the time window [0 s, 1 s] to exclude the contribution of spurious reflections coming from 
artificial boundaries. Again, the accuracy of both the QSEM and OTSEM is comparable and is clearly superior to that of 
the conventional TSEM. For instance, the accuracy of the 14th-order TSEM (group3) is comparable to that of the 7th-order 
OTSEM (group1). In general, the accuracy of both the QSEM and OTSEM improves as the polynomial order increases, which 
is not as evident with the TSEM. In each group, although the OTSEM always uses fewer nodes than the QSEM (see the 
last column in Table 7), the former produces surprisingly good results compared to the latter. In particular, the accuracy 
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Fig. 10. Windowed synthetic seismograms of the vertical displacement component (left plots) and associated computation errors (right plots) obtained by 
different methods and degrees N . From top to bottom, the seismic records are divided into three groups for comparison. The blue lines are the results 
obtained by the TSEM, i.e., the Fekete points-based triangular SEM; the green lines are the results obtained by the QSEM, i.e., the quadrilateral SEM; and 
the red lines are the results obtained by the OTSEM, i.e., the optimized cubature points-based triangular SEM. The analytical solution (black line) is also 
included in the graphics (a, c, e) as the reference solution. The computation errors are computed by subtracting the reference solution from the numerical 
solution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of the 9th-order OTSEM is slightly higher than that of the 9th-order QSEM (see the last rows of group3 in Table 7). This 
demonstrates that the OTSEM can compete with the QSEM advantageously or even be better (see group3 in Table 7).

In this half-space model (and in a non-flat topography model presented in the next section), we use the same computa-
tional language (Fortran 90, serial code) to implement and execute calculation routines with the Windows operating system 
on the same computer (Intel(R) Core(TM) i7-4790, 3.60 Hz), which allows us to measure the efficiency of each method. De-
pending on the polynomial degree N , the efficiency of each method (TSEM, QSEM and OTSEM) is evaluated by the elapsed 
time, as is shown in Fig. 11. For comparison, the results are displayed as histogram bars for each of the three groups. The 
respective elapsed times increase passing from the method group1 to group3 (Fig. 11), but the accuracy improves. In each 
group, although the number of nodes used by the OTSEM is always the smallest (see right column in Table 7), its elapsed 
time is substantially lower than that of the TSEM but is slightly higher than that of the QSEM (Fig. 11). This is because, on 
the one hand, the number of elements of the OTSEM is two times larger than the number of elements of the QSEM; on the 
other hand, the CFL number of the former is smaller than that of the latter. In addition, the stiffness matrix of the OTSEM is 
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Fig. 11. Histograms of elapsed times corresponding to the numerical examples developed from different methods (TSEM, QSEM and OTSEM) and degrees 
N (Fig. 10) in the half-space model. Acronyms: TSEM, Fekete points-based triangular SEM; QSEM, the quadrilateral SEM; OTSEM, the optimized cubature 
points-based triangular SEM. The numbers over the columns indicate the consumption of the elapsed time.

Fig. 12. Two-layer model with irregular topography defined by P- and S-wave velocities and densities (a) and mesh conformed by triangular elements (b). 
The pentagram represents the seismic source, while the inverted triangles on surface indicate the receivers. The shaded lateral and bottom bands represent 
the perfectly matched layers (PMLs). The thin white dashed lines included in (b) represent the surface and interface drawn in (a).

much denser than that of the QSEM, which affects the float-point operations involved in the product of the stiffness matrix 
and the displacement vector. Even so, compared to the conventional TSEM, the computational efficiency of the OTSEM is 
clearly improved.

7.3. Non-flat topography model

The considered half-space model up to here is fairly simple, so that the straight-edge triangles are sufficient to completely 
delineate it. However, we now use a non-flat topography model just as one shown in Fig. 12(a) to further test the accuracy 
of the OTSEM on curvilinear triangular elements. Owing to the existence of rugged topography and an undulated interface, 
we use six control points in each curved-edge triangular element to accurately delineate the model, especially for those 
zones close to the surfaces and interface. The discretized model with irregular topography and an undulated interface can 
be seen in Fig. 12(b). As before, the shaded bands are PMLs. One can appreciate that both the discretized topography and 
interface (thin white dashed lines) are almost the same as those in the real model, which proves the flexibility of the 
triangle, even with a coarse grid.

The model size is 3 km × 1 km and consists of two isotropic layers with variable thickness. The largest undulation 
extends over 0.4 km. For the upper layer, the density is 2.0 g/cm3, Vp is 2.0 km/s and Vs is 1.3 km/s; for the lower layer, the 
density is 2.2 g/cm3, Vp is 2.8 km/s and Vs is 1.473 km/s. The model is discretized by 1671 triangular elements (including 
PMLs; see Fig. 12b). The longest edge of the triangles is 0.145 km, while the shortest edge is 0.041 km. To suppress spurious 
reflections from artificial boundaries, we intentionally adopt relatively thick PMLs (0.2 km). The pentagram represents the 
seismic source, while the inverted triangles on the surface represent the receivers. The point source is located at the point 
(1.5 km, 0 km) and consists of a vertical force simulated by a Ricker wavelet with a dominant frequency of 13.2 Hz. The 
receivers are deployed exactly on the surface at horizontal distances of 0.5 km, 1.0 km, 1.5 km, 2.0 km and 2.5 km to record 
the horizontal and vertical displacement components with a record length of 5 s. To eliminate the differences from meshes 
(i.e., differences between the quadrilaterals and triangles), we do not consider the 7th-order QSEM at this point and use only 
the 10th-order TSEM and 7th-order OTSEM for comparison. Given that the analytical solution for this model is not available, 
we use the numerical solution obtained by the 9th-order OTSEM as a reference solution. Considering the stability condition, 
the maximum allowable time intervals are 0.186 ms, 0.181 ms and 0.069 ms when applying the 10th-order TSEM, 7th-order 
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Fig. 13. Snapshots of the vertical displacement component at t = 0.5 s. Panels (a), (b), and (c) show the snapshots obtained by the 10th-order TSEM, 
7th-order OTSEM, and 9th-order OTSEM, respectively. The small white arrows indicate the serious numerical dispersion (mainly in panel a). Acronyms: 
TSEM, Fekete points-based triangular SEM; OTSEM, optimized cubature points-based triangular SEM. Notations: P, direct P-wave; S, direct S-wave; Tp, 
transmitted P-wave; PS, P-to-S converted wave; R, Rayleigh wave.

OTSEM and 9th-order OTSEM, respectively. Nevertheless, we intentionally use much smaller time intervals to eliminate the 
effects of discretization in time, namely, 0.050 ms, 0.050 ms and 0.025 ms, respectively.

Fig. 13 shows snapshots of the vertical displacement component at t = 0.5 s obtained by the 10th-order TSEM, 7th-order 
OTSEM and 9th-order OTSEM. The real surface and interface (black solid lines) are superimposed on the snapshots. Intu-
itively, these snapshots are very complex due to the multiple reflected waves from the rugged topography and interface. 
Even so, the direct P-wave (P), direct S-wave (S), transmitted P-wave (Tp), P-to-S converted wave (PS) and Rayleigh wave 
(R) can be easily identified. It is obvious that the snapshot obtained by the 10th-order TSEM exhibits serious numerical dis-
persion in the area surrounded by the wavefront of the direct S-wave (small white arrows in Fig. 13a); this effect does not 
occur in the two other snapshots computed by the 7th-order (Fig. 13b) and 9th-order OTSEM (Fig. 13c). This demonstrates 
the relatively low accuracy of the conventional TSEM compared to the OTSEM.

Fig. 14 shows the synthetic traces of the horizontal and vertical displacement components (left plots) obtained by differ-
ent methods and degrees N at the five receivers deployed on the surface (Fig. 12a). The blue traces are the results obtained 
by the 10th-order TSEM, while the red traces are the results obtained by the 7th-order OTSEM, respectively. The numerical 
solution obtained by the 9th-order OTSEM is the reference solution (black traces in Figs. 14a and 14c). The traces computed 
by the OTSEM better fit the reference solution compared to those calculated by the TSEM. The computation errors are com-
puted by subtracting the reference solution from the numerical solution and are shown with an amplification factor of 5 
(Figs. 14b and 14d). As expected, the errors of the TSEM are obviously higher than those of the OTSEM since the numerical 
dispersion (Fig. 13a) is mainly responsible for the errors. This illustrates that the accuracy of the 7th-order OTSEM is higher 
than that of the 10th-order TSEM.

Table 8 lists the computation errors associated with the horizontal and vertical displacement components recorded at 
the five receivers deployed on the surface (Fig. 12), depending on the used method and degree N . The symbols emax and 
eL2 denote the errors determined by the maximum-norm and L2-norm errors, respectively. The comparison of all these 
errors further confirms that the accuracy of the 7th-order OTSEM is higher than that of the 10th-order TSEM even for 
curvilinear triangles. With respect to the computational efficiency, the 10th-order TSEM takes 120.2 minutes, while the 
7th-order OTSEM takes 47.5 minutes. Thus, the former consumes almost three times more time than the latter, due to the 
smaller CFL number and the greater number of nodes compared to the 7th-order OTSEM. This confirms that the OTSEM is 
more efficient than the conventional TSEM even for curvilinear triangles.

8. Conclusions

The present work focuses on the development of a new spectral element approximation based on the use of triangular 
elements, new quadrature rule and interpolation points, so that the mass matrix is diagonal. The approach is of nodal type 
and the set of inner nodes is chosen to achieve a high enough quadrature capability.
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Fig. 14. Synthetic seismograms of the horizontal and vertical displacement components (left plots, a and c) obtained by different methods and degrees N
at the five receivers deployed on the surface (Fig. 12). The blue and red traces are the results obtained by the 10th-order TSEM and the 7th-order OTSEM, 
respectively. The solution obtained by the 9th-order OTSEM is the reference solution (black traces in plots a and c). The real amplitudes are shown in the 
left column, while the computation errors (numerical solution – reference solution) are shown with an amplification factor of 5 (right plots, b and d). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 8
Statistics of computation errors associated with the horizontal and vertical displacement components recorded at the five receivers deployed on surface 
(Fig. 12a), depending on the used method and degree N . The symbols emax and eL2 denote the errors determined by the maximum-norm and L2-norm, 
respectively. MN denotes the total number of nodes (or degrees of freedom) in each triangular element.

Receiver 
location

Method
x-component z-component MN

emax eL2 emax eL2

0.5 km 10th order TSEM 2.677e−1 4.997e−2 3.883e−1 4.138e−2 66
7th order OTSEM 8.399e−2 1.609e−2 6.967e−2 1.096e−2 57

1.0 km 10th order TSEM 9.894e−2 1.762e−2 1.627e−1 2.599e−2 66
7th order OTSEM 4.269e−2 5.659e−3 7.481e−2 1.051e−2 57

1.5 km 10th order TSEM 1.746e−1 3.325e−2 1.458e−1 1.531e−2 66
7th order OTSEM 9.928e−2 1.402e−2 1.812e−1 1.266e−4 57

2.0 km 10th order TSEM 2.903e−1 3.054e−2 1.628e−1 1.713e−2 66
7th order OTSEM 2.749e−2 2.478e−2 1.726e−1 1.618e−2 57

2.5 km 10th order TSEM 2.853e−1 3.880e−2 3.052e−1 3.682e−2 66
7th order OTSEM 1.331e−1 2.110e−2 1.424e−1 1.665e−2 57

First, we analyzed the effects of the numerical integration on the mass and stiffness matrices through the dispersion 
analysis. This analysis illustrates that an accurate estimation of the stiffness matrix is more significant than the mass matrix. 
Thus, an optimized cubature formula that can accurately compute the stiffness matrix and simultaneously estimate the mass 
matrix with enough approximation (although not accurate) is the way to achieve a greater accuracy and rapid convergence. 
When a larger space of polynomials that vanish on the boundaries is considered, this condition is relaxed by requiring that 
the quadrature rule can accurately integrate polynomials up to a degree q = N + N f − 2 to avoid accuracy loss after mass 
lumping.

We have used a p-norm-based objective function along with local optimization method to obtain higher-order cubature 
points for degrees 7 to 9. The convergence analysis illustrates that the three new cubature formulas allow us to obtain an 
approximate convergence rate of O (N−1/2). We have listed the CFL numbers for the conventional TSEM, the TSEM with 
both mass and stiffness matrices computed by exact integration, and the optimized cubature point-based TSEM (OTSEM). 
The developed algorithm always leads to positive integration weights and high integration accuracy so that both the stabil-
ity over time and spatial accuracy can be maintained simultaneously. In addition, the optimized cubature formulas provide 
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well-conditioned interpolants. This also avoids the inversion of a wide bandwidth mass matrix because the collocated inter-
polation and integration points are kept in mind, which leads to a diagonal mass matrix.

We have performed a numerical experiment using a half-space model, which proves that the OTSEM improves the ac-
curacy of the TSEM by approximately one order of magnitude. In particular, the accuracy of the 7th-order OTSEM is even 
higher than that of the 14th-order TSEM. Compared to the quadrilateral SEM (QSEM), the OTSEM can compete advanta-
geously. In particular, the accuracy of the 9th-order OTSEM is slightly higher than that of the 9th-order QSEM. In terms of 
convergence, the computation error of the OTSEM decreases exponentially as the polynomial degree increases. In terms of 
computational efficiency, the OTSEM is more efficient than the TSEM, although it is slightly costlier than the QSEM when a 
comparable numerical accuracy is considered.

Another numerical experiment conducted on a non-flat topography model and an undulated interface has allowed us 
to test the accuracy of the OTSEM on curvilinear triangles. In particular, the 7th-order OTSEM is able to generate good 
results, while the 10th-order TSEM suffers from serious numerical dispersion. In terms of efficiency, the 7th-order OTSEM 
is significantly more efficient than the 10th-order TSEM.

The new implemented approach is able to achieve a high-order quadrature accuracy, so it is also of interest to solve 
many other problems besides seismic wavefield modeling, for instance evolution problems with an explicit time marching. 
However, although the success of the optimized cubature formula is obtained in the triangle, it is not easy to extend to 
tetrahedral elements in 3D because of the inherent difficulty of the optimization problem.
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