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Abstract Seismic ray tracing in anisotropic media with

irregular surface is crucial for the exploration of the fine

crustal structure. Elliptically anisotropic medium is the

type of anisotropic media with only four independent

elastic parameters. Usually, this medium can be described

by only the vertical phase velocity and the horizontal phase

velocity for seismic wave propagation. Model parameteri-

zation in this study is described by flexible triangular grids,

which is beneficial for the description of irregular surface

with high degree of approximation. Both the vertical and

horizontal phase velocities are defined in the triangular

grids, respectively, which are used for the description of

phase velocity distribution everywhere in the model by

linear interpolation. We develop a shooting ray tracing

method of turning wave in the elliptically anisotropic

media with irregular surface. Runge-Kutta method is

applied to solve the partial differential equation of seismic

ray in elliptically anisotropic media. Linearly modified

method is used for adjusting emergent phase angles in the

shooting scheme. Numerical tests demonstrate that ray

paths coincide well with analytical trajectories in trans-

versely homogeneous elliptically anisotropic media. Seis-

mic ray tracing results in transversely inhomogeneous

elliptically anisotropic media demonstrate that our method

is effective for further first-arrival tomography in ellipti-

cally anisotropic media with an irregular surface.
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1 Introduction

A large number of researches and explorations confirm that

seismic anisotropy is common in the crust and upper

mantle (Hess 1964; Christensen and Crosson 1968; Francis

1969; Crampin 1978, 1984; Crampin et al. 1980; Helbig

1983; Lyakhovitskiy 1984; Thomsen 1986; Kaneshima

1990; Wild and Crampin 1991; Weiss et al. 1999; Zhang

2002a, b; Gao and Teng 2005; Wang and Zhao 2009; Li

et al. 2011; Ouyang et al. 2015). The propagation of seis-

mic waves in anisotropic media is the foundation of the

anisotropic research.

The methods to solve the propagation of seismic waves

mainly include wave-field simulation (Carcione et al. 1992;

Lan and Zhang 2011; Liu et al. 2014a, b), seismic ray

tracing (Cerveny 2001; Cardarelli and Cerreto 2002; Xu

et al. 2006, 2008, 2010, 2014) and traveltime calculation

using eikonal equation (Faria and Stoffa 1994; Lan and

M. Zhang (&)
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Zhang 2013a, b). Compared with the method of traveltime

calculation using eikonal equation, ray tracing methods not

only can obtain the traveltime of the seismic wave field, but

also can get the ray trajectories in the ground (Shearer and

Chapman 1989; Cerveny 2001). Traditional ray tracing

methods include shooting methods (Langan et al. 1985;

Virieux and Farra 1991; Xu et al. 2004, 2007, 2008) and

bending methods (Julian and Gubbins 1977; Thurber and

Ellsworth 1980; Aki and Richards 1980). Based on the

bending method, Um and Thurber (1987) developed the

pseudo-bending method, which was used to solve the two-

point ray tracing in continuous media (Um and Thurber

1987; Pereyra 1992; Xu et al. 2006), while is not suit-

able for the presence of strong velocity discontinuities. To

solve this problem, Zhao et al. (1992, 1994) and Zhao and

Lei (2004) developed a method using the Snell’s law to

correct the path points on discontinuous interfaces. Xu

et al. (2010, 2014) developed a ray tracing perturbation

scheme of combination of pseudo-bending methods and

segmentally iterative methods. In recent decades, the ray

tracing methods developed include wavefront reconstruc-

tion methods (Vinje et al. 1993, 1996a, b, 1999), slowness

matching methods (Symes 1996; Symes and Qian 2003),

Huygens wavefront tracing methods (Sava and Fomel

2001), shortest path methods (Moser 1991; Fischer and

Lees 1993; Zhou and Greenhalgh 2005) and simulated

annealing methods (Bona et al. 2009).

Rough topography is very common, and we have to deal

with it during the acquisition, processing and interpretation

of seismic data (Neuberg and Pointer 2000; Bean et al.

2008; Lan and Zhang 2011; Lan et al. 2012; Bevc 2012).

How to accurately describe the geological model with

undulating interfaces is very important for solving the

seismic wave propagation. The methods always used

include the approximation method with ladderlike grids

(Sun et al. 2011; Sun 2011), the model expansion method

with regular grids (Hole 1992; Ma and Zhang 2014), the

nonuniform grid spacing method (Sun et al. 2012a, b), the

hybrid grid spacing method (Sun et al. 2009, 2012a; Bai

et al. 2010, 2013; Li et al. 2013), the curved grid spacing

method (Thompson et al. 1985; Hestholm and Ruud

1994, 1998; Dong 2005; Wang and Liu 2006; Hestholm

et al. 2006; Lan et al. 2012; Lan and Zhang 2011, 2013a, b;

Ma and Zhang 2014) and the triangulated meshing method

(Fomel 1997; Sethian 1999; Xu et al. 2006, 2010; Kao

et al. 2008; Yu et al. 2010; Bai et al. 2012). The triangular

grids are simple and flexible in modeling and can describe

any undulating terrain with high degree of approximation.

The elliptically anisotropic media is the anisotropic

media with only four independent elastic parameters. The

propagation of seismic waves can be described only by the

vertical phase velocity and the horizontal phase velocity. In

this paper, we construct the medium models with irregular

surface parameterized by the flexible triangular grids and

then develop the ray tracing method of turning waves in the

elliptically anisotropic media with irregular surface, which

can be regarded as the forward modeling of the further

first-arrival tomography in the media.

2 Elliptically anisotropic media

We often use elastic parameters (or elastic tensor) to

describe seismic anisotropic media (Cerveny 2001). The

elliptically anisotropic media have only four independent

elastic parameters (Schleicher and Aleixo 2007), and its

elastic tensor has one more condition than that of the

transversely isotropic media with vertical symmetry axis

(VTI). If Cik denotes an element of the elastic tensor and

Aik denotes an elastic tensor element with density nor-

malization, that is, Aik = Cik/q, the density normalized

elastic tensor matrix A in the elliptically anisotropic media

is expressed as

A ¼

A11 A12 A13 0 0 0

A12 A11 A13 0 0 0

A13 A13 A33 0 0 0

0 0 0 A44 0 0

0 0 0 0 A44 0

0 0 0 0 0 A66

0
BBBBBB@

1
CCCCCCA

ð1Þ

where the elastic tensor satisfies the following conditions

(Schleicher and Aleixo 2007):

A2 ¼ A11 � 2A66

A13 þ A44ð Þ2 ¼ A11 � A44ð Þ A33 � A44ð Þ
ð2Þ

Condition (2) is represented by the Thomsen parameters

(Thomsen 1986) as e = d. Thomsen parameters were

proposed and deduced to characterize the elastic properties

of transversely isotropic media and to analyze the propa-

gation characteristics of waves in weakly anisotropic

media. e is used to measure the anisotropic intensity of P

wave, which reflects the difference between the horizontal

phase velocity and vertical phase velocity of P wave,

whereas d is a transitional parameter associated with ver-

tical phase velocity and horizontal phase velocity of P

wave, reflecting the magnitude of anisotropy of phase

velocity near the vertical direction of P wave (Niu et al.

2002).

Rasolofosaon (1998) suggested that the anisotropy

induced by stress may be elliptical anisotropy. Therefore,

the elliptically anisotropic media is common in the ground

which is the anisotropic media with the least parameters

observed so far (Gurvich 1940; Kleyn 1956; Levin 1978;

Daley and Hron 1979; Rogister and Slawinski 2005;

Grechka 2009). The expression of the wavefront velocity
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(phase velocity) in the elliptically anisotropic media (Ro-

gister and Slawinski 2005) is:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2H sin2 hþ v2V cos2 h

q
ð3Þ

where vH and vV denote the horizontal and vertical com-

ponent of the wavefront velocity, respectively. h is the

wavefront angle (phase angle) which is the angle between

the normal direction of the seismic wavefront and the

symmetry axis of the medium.

It can be seen from the expression of the phase velocity

(3) that the propagation of seismic waves in the elliptically

anisotropic media is described only by the vertical and

horizontal phase velocities. The ratio of these two veloci-

ties is called elliptical coefficient (Schleicher and Aleixo

2007; Grechka 2009). Compared with the isotropic media,

the elliptically anisotropic media has only one more

parameter to describe the propagation of seismic waves.

3 Model parameterization

Model parameterization is the first step of ray tracing. We

construct models with irregular surface and then carry out

the parameterization in two steps. Firstly, we mesh the

model using the triangular grids (Fig. 1) and define the

vertical phase velocity vV and the horizontal isotropic plane

phase velocity vH on the grid nodes, respectively. Here, we

use the finite element pre- and post-processing software

GiD 9.0.2 (Otin et al. 2005) to mesh the medium models

with the unstructured triangles.

Then, we use the linear interpolation method to obtain

the vertical and horizontal velocities everywhere inside all

triangulated grids, that is,

vV ¼
X3
i¼1

vViui; vH ¼
X3
i¼1

vHiui ð4Þ

where vVi and vHi are the vertical and horizontal phase

velocities of the three vertices in a triangular grid,

respectively; ui is the corresponding area coordinate in a

triangle (Xu et al. 2004, 2005, 2006); and vV and vH are

vertical and horizontal phase velocities of an given point,

respectively. After these two steps, we can obtain the

velocity distribution within the whole model space (Fig. 2).

4 Ray tracing method

4.1 Ray equation

The eikonal equation is a nonlinear partial differential

equation describing the propagation characteristics of

wavefront in nonuniform continuous anisotropic media

(Kravtsov and Orlov 1990; Cerveny 2001; Slawinski

2003). We introduce the ray equation in the elliptically

anisotropic media from the eikonal equation.

The general form of the eikonal equation is expressed as

(Slawinski 2003):

p2 ¼ 1

v2ðx; pÞ ð5Þ

where x ¼ ðx; zÞ is the position vector and p is the wave-

front slowness which is normal to the wavefront.

Phase velocity expression (3) is substituted into Eq. (5):

ðv2H sin2 hþ v2V cos2 hÞp2 ¼ 1 ð6Þ

that is,

v2Hp
2
x þ v2Vp

2
z ¼ 1 ð7Þ

Fig. 1 Triangulated mesh method to construct a model with irregular

surface Fig. 2 Phase velocity definition in elliptically anisotropic media
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where px and pz are the horizontal and vertical component

of the wavefront slowness vector p, respectively. h is the

phase angle which is positive in the counterclockwise

direction from the axis of symmetry. Equation (7) is the

eikonal equation of elliptical anisotropy.

The eikonal equation can be considered as a nonlinear

partial differential equation, and then, ray equation is

obtained by solving the eikonal equation using the method

of characteristics (Daley and Hron 1979; Cerveny 2001).

Considering the general form of the Hamiltonian function:

dxi

dt
¼ oH

opi
dpi

dt
¼ � oH

oxi
;

8>><
>>:

ð8Þ

where H = H(xi, pi), i = 1, 2, and x1 = x, x2 = z,

p1 = px, p2 = pz. The Hamiltonian function containing

the eikonal equation information in the elliptically

anisotropic media can be obtained from Eq. (7)

(Slawinski 2003).

H ¼ 1

2
v2p2

¼ 1

2
v2Hp

2
x þ v2Vp

2
z

� �
:

ð9Þ

The ray equations are obtained by substituting formula

(9) into formula (8):

dx

dt
¼ oH

opx
¼ v2Hpx;

dz

dt
¼ oH

opz
¼ v2Vpz;

dpx

dt
¼ � oH

ox
¼ � vH

ovH

ox
p2x þ vV

ovV

ox
p2z

� �
;

dpz

dt
¼ � oH

oz
¼ � vH

ovH

oz
p2x þ vV

ovV

oz
p2z

� �
:

ð10Þ

where t is the traveltime along ray trajectories. The initial

conditions of the equations above are:

px0 ¼
sin h0
v

; pz0 ¼
cos h0
v

;

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2H sin2 h0 þ v2V cos2 h0

q
:

ð11Þ

Based on the ray Eqs. (10), the Runge-Kutta method

(Press et al. 2007) is used to calculate the numerical

solutions of the shooting ray paths.

4.2 Linearly modified shooting method

The linearly modified shooting method (Xu et al. 2007) is

used to trace the ray paths. The specific process is intro-

duced as follows.

Firstly, given several departure group angles (also called

ray angles, that is, the angles between the vectors of the

group velocities and the symmetries of the media which are

positive in the counterclockwise direction from the axis of

symmetry) and the known velocity distribution, we can

obtain the departure phase angles and the shooting ray

trajectories using the Runge-Kutta method. The relation-

ship of phase angle and group angle is expressed by

Eq. (12) (Thomsen 1986). To substitute formula (6) into

formula (12), we can get the departure phase angles

expressed by group angles in Eq. (13):

tanu ¼ tan hþ 1

v

dv

dh

� ��
1� tan h

v

dv

dh

� �
ð12Þ

h ¼ a tan
tan uð Þ
k2

� �
; ð13Þ

where k = vH/vV.

Secondly, we search for two ray paths adjacent to each

side of the known receiver, and then, we calculate the

departure group angle of a new ray between the two

adjacent rays by linear interpretation (Xu et al. 2007). The

equation of the linear interpretation is:

u ¼ ua

x� xaj j
xa � xbj j þ ub

x� xbj j
xa � xbj j ; ð14Þ

where xa and xb are the horizontal coordinates of the

detection points of the two rays adjacent to each side of the

known receiver, respectively, and ua and ub are the cor-

responding departure group angles of the two rays,

respectively.

Finally, we calculate the departure phase angle from the

new departure group angle, and a new ray path is obtained

by shooting using the Runge-Kutta method. If the differ-

ence between the emergent position of the new path and the

position of the given receiver satisfies the accuracy

requirement, tracing is over, otherwise, the previous pro-

cedure is repeated to find the final ray path.

5 Numerical test

5.1 Ray tracing in transversely homogeneous

elliptically anisotropic media

We construct a model with a range of 10 km in horizontal

direction and 5 km in depth direction and with a gently

undulating surface (Figs. 3, 5). The transversely homoge-

neous elliptically anisotropic velocity model is defined by

three parameters: a, b and v, where it assumes that the

wavefront velocity is only related to the depth and the

propagation direction of the vertical plane (Slawinski et al.

2004):
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vV ¼ aþ bz; v ¼ v2H � v2V
2v2V

ð15Þ

where a is the initial vertical velocity, b is the vertical

velocity gradient, z is the depth and v is a dimensionless

constant which indicates the relationship between the ver-

tical phase velocity and horizontal phase velocity.

In the transversely homogeneous elliptically anisotropic

velocity model defined by Eq. (15), ray trajectories have

analytical solutions. Thus, it is useful to examine our ray

tracing method.

Given that the source is located at the point (x0, z0), and

the departure group angle is /0, the initial phase angle h0
can be calculated by Eq. (13). The analytical expression of

the ray path can be derived as (Rogister and Slawinski

2005):

x� x0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P2 aþ bz0ð Þ2 1þ 2vð Þ

q
=Pb

� 	2

1=Pbð Þ2

þ zþ a=bð Þ2

1= Pb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2v

p
ð Þ½ �2

¼ 1 ð16Þ

The traveltime expressed by the offset x on the surface

is:

t ¼ 1

b
a tanh Pb x� x0ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1þ 2vð ÞP2 aþ bz0ð Þ2

q� 	


þa tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1þ 2vð ÞP2 aþ bz0ð Þ2

q �

ð17Þ

We set the values of each parameter as: a = 2.5 km/s,

b = 0.7 s-1, v = 0.06 and the source is set at the point

with position of (0, 0). Then, three ray paths (blue curves in

Fig. 3) are shooting by the Runge-Kutta numerical method

with the time step Dt being 0.01 s. The corresponding

theoretical ray paths are obtained by Eq. (16) (red curves in

Fig. 3). Meanwhile, we also compare the traveltime of the

numerical results with the traveltime of the corresponding

theoretical ray paths calculated by Eq. (17) (shown in

Fig. 4). We carry out another test with the time step being

Fig. 3 Ray paths in the horizontal homogeneous elliptically anisotropic medium with the time step Dt being 0.01 s. a Vertical phase velocity

field; b horizontal phase velocity field; blue curves denote the numerical solutions, while red curves denote the analytical solutions

Fig. 4 Comparison of the traveltime between the numerical and

theoretical results of the test shown as Fig. 3. Blue crosses denote the

traveltimes of the numerical results in Fig. 3, while red crosses denote

the corresponding theoretical traveltimes
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0.001 s and then get the numerical (blue curves) and the-

oretical (red curves) ray paths shown in Fig. 5, respec-

tively. The comparison results of the traveltime between

the numerical and theoretical results are shown in Fig. 6. It

can be seen that the precision of the numerical results is

higher with the time step reducing. When the time step is

small enough, the numerical results gradually approach to

the theoretical ones, but the shooting process will become

more time-consuming. As a result, an appropriate time step

should be chosen for the balance between the accuracy and

efficiency.

5.2 Ray tracing in transversely inhomogeneous

elliptically anisotropic media

We construct a medium model with a range of 10 km in

horizontal direction and 5 km in depth direction. The sur-

face undulation is controlled by formula (18).

z ¼ �7:0e� ð x�xmax=2j j�6Þ=2:5½ �2 þ 5:5e� x�xmax=2j j�15ð Þ=2:5½ �2

� 2:5e� x�xmax=2j j�25ð Þ=2:5½ �2 � 2e� x�xmax=2j j�35ð Þ=2:5½ �2

ð18Þ

We place the source on the surface with a horizontal

position of 0.5 km. The receivers are also placed on the

surface. We set 18 receivers whose horizontal positions

start from 1.5 to 10 km with the spacing of 0.5 km.

Firstly, we mesh the model by the triangular grids and

then define the vertical phase velocity vV and the horizontal

phase velocity vH in all grid nodes. The velocity model we

use is:

vV ¼ aþ bz; vH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2v

p
vV 1þ k cos

4px
l

� �
ð19Þ

where the values of all parameters are a = 2.5 km/s,

b = 0.6 s-1, v = 0.1, l = 10 km, k = 0.12, respectively.

It can be seen from Eq. (19) that the vertical phase velocity

field is transversely homogeneous, but the horizontal phase

velocity field is transversely inhomogeneous. The velocity

Fig. 5 Ray paths in the horizontal homogeneous elliptically anisotropic medium with the time step Dt being 0.001 s. a Vertical phase velocity

field; b horizontal phase velocity field; blue curves denote the numerical solutions, while red curves denote the analytical solutions. Note that red

curves almost coincide with blue ones

Fig. 6 Comparison of the traveltime between the numerical and

theoretical results of the test shown as Fig. 5. Blue crosses denote the

traveltimes of the numerical results in Fig. 5, while red crosses denote

the corresponding theoretical traveltimes. Note that red crosses almost

coincide with blue ones due to small traveltime difference
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distributions in both directions everywhere inside the tri-

angulated grids are obtained by linear interpolation.

We try-shoot 16 rays (Fig. 7) by the Runge-Kutta

method with the departure group angle of the first ray being

p/4 and the departure angle of each subsequent ray being

increased by p/100. Then, the final ray tracing results

(Fig. 8) are obtained by the shooting method as described

above. Here, the precision of shooting ray tracing is defined

as the distance between the position of emergent points of

ray path and the receiver locations, which is typically equal

to 15 m in this paper.

Figure 7 shows that triangular grids are flexible with

high degree of approximation to describe a strong undu-

lating terrain, and ray tracing of turning waves in the

transversely inhomogeneous elliptically anisotropic media

is achieved. Note that some receivers are located in the

shadow zone and cannot be traced due to sharp undulations

of the terrain.

Fig. 7 Try-shooting ray paths in the transversely inhomogeneous elliptically anisotropic media. a Ray paths in vertical phase velocity field;

b ray paths in horizontal phase velocity field

Fig. 8 Ray tracing results in the transversely inhomogeneous elliptically anisotropic media by the shooting method. Note that some receivers are

located in the shadow zone and not traced. a Ray paths in vertical phase velocity field; b ray paths in horizontal phase velocity field
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6 Conclusions

We employ vertical and horizontal phase velocity for

seismic wave propagation in elliptically anisotropic media.

Models with irregular surface are constructed, and model

parameterization is realized by applying flexible triangular

grids with high degree of approximation to the irregular

surface. The vertical and horizontal phase velocities are

defined in the triangular grids, respectively, and then, the

phase velocity distribution everywhere in the model is

obtained by linear interpolation. A shooting method for

turning wave in the elliptically anisotropic media with

irregular surface has developed. The partial differential

equation of seismic ray in elliptically anisotropic media is

solved by Runge-Kutta method, and the linearly modified

method is used for adjusting departure phase angles in the

shooting scheme. Numerical tests show that seismic tracing

rays coincide well with analytical trajectories in trans-

versely homogeneous elliptically anisotropic media. Seis-

mic ray tracing results in transversely inhomogeneous

elliptically anisotropic media demonstrate that our method

is effective for further first-arrival tomography in ellipti-

cally anisotropic media with an irregular surface.
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