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This paper presents new 2D and 3D ray-tracing methods that can be applied to traveltime and ray path compu-
tations for transmitted, reflected and turning seismic waves in complex geologic models. The new ray-tracing
scheme combines segmentally iterative ray tracing (SIRT) and pseudo-bending methods to address both strati-
fied and arbitrarily shaped block models. The newmethod robustly extends our previous constant blockmodels
and constant gradient block models to generally heterogeneous block models, and incorporates cubic splines or
triangulated interfaces to boundaries of complex geological bodies. Themethod is thusmorewidely applicable to
practical problems. A successive three-point perturbation scheme is formulated that iteratively updates the
midpoints of a segment based on an initial ray path. The midpoints are corrected by applying first-order analytic
formulae to locations of themidpoint inside the block or on the boundaries of the blocks,which are then updated
with the pseudo-bending method and SIRT algorithm instead of the traditional iterative methods. Empirical ap-
plications, including an example addressing the Bohemian Massif, demonstrate that this successive three-point
perturbation scheme successfully performs kinematic ray tracing in heterogeneous complex 2D and 3D media.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Two-point ray tracing is crucial in locating earthquake, tomographic
imaging, seismicmigration and design of seismic data acquisition. Com-
pared to the eikonal equation solver (Lan and Zhang, 2013a,b; Vidale,
1988, 1990), two-point ray tracing can calculate both ray-trajectories
and traveltimes, which are required in traveltime tomographic inver-
sions and earthquake source inversion. Dynamic ray tracing can be ac-
complished by calculating ray amplitudes in terms of the transport
equation along the ray-trajectories (Cerveny, 2001). Previously report-
ed kinematic ray-tracing techniques include shooting methods
(Langan et al., 1985; Sambridge et al., 1995; Sun, 1993; Virieux and
Farra, 1991; Xu et al., 2008) and bending methods (Aki and Richards,
1980; Julian and Gubbins, 1977; Keller and Perozzi, 1983; Mao and
Stuart, 1997; Pereyra, 1992; Prothero et al., 1988; Thurber and
Ellsworth, 1980; Umand Thurber, 1987; Xu et al., 2006, 2010). Shooting
methods are efficient in global search for receivers, whereas bending
methods are advantageous in case of high uncertainty in functions relat-
ing receiver positions and shooting angles. Other methods include
wave-front techniques (Vinje et al., 1993, 1996), the shortest path
methods (Moser, 1991; Zhang et al., 2000; Zhao et al., 2004) and simu-
lated annealing search (Velis and Ulrych, 1996, 2001). The most
advantage of the three methods is to trace a global minimum of the
traveltimes. A good review of these methods can be found in Cerveny
(2001, 1988).

The ray-tracing methods described above are all based on model
parameterizations, which may be defined by either a set of discrete ve-
locity values (Langan et al., 1985; Moser, 1991; Vidale, 1988, 1990) or a
piecewise set of continuous velocity functions (Chapman and Pratt,
1992; Zhou and Greenhalgh, 1992a,b). Rectangular cells perform better
than irregular cells in the grided-models in calculating traveltimes and
tracking ray paths. The complex geometries of natural geological
media require fine-scale grids that can become computationally inten-
sive, especially in processing three-dimensional models (Moser, 1991;
Zhao et al., 2004).

Kinematic as well as dynamic ray-tracing methods often employ
continuous parameterization operations, which may solve eikonal and
transportation equations, and improve the accuracy of traveltime and
amplitude estimates. Layered structures are widely used in this circum-
stance and may be characterized by sequential continuous media
(GuiZiou et al., 1996; Keller and Perozzi, 1983; Mao and Stuart, 1997;
Rawlinson et al., 2001; Zelt and Smith, 1992; Zhang and Klemperer,
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2005; Zhang and Wang, 2007; Zhang et al., 2003, 2005, 2013). A hori-
zontally stratified model for example provides the most efficiently
calculated traveltimes and ray paths for sedimentary material. The
ray-tracing algorithm for layered model however does not apply to
the complex subsurface media often encountered in seismic explora-
tion, which instead resembles a series of irregular blocks. An irregular
block model can more accurately approximate complex structures
such as faults, pinch-out layers, intrusive bodies and lenses, but also
brings more computational times of ray-tracing in such complex geo-
logical models (Bai et al., 2007; Gjøystdal et al., 1985; Pereyra, 1992,
1996; Xu et al., 2006, 2010).

We recently developed a robust segmentally iterative ray tracing
(SIRT) method in an irregular block model. Two fast ray-tracing algo-
rithms have been proposed for the constant velocity block model (Xu
et al., 2006) and constant velocity gradient block model (Xu et al.,
2010). This paper, extends our previous work by applying SIRT method
to a heterogeneous blockmodel thatmore closely approximates geolog-
ical media. The extension required (1) model parameterization with
generally heterogeneous velocity blocks and arbitrary boundaries
defined by cubic splines or triangulated interfaces, (2) analytic formula-
tions of the ray bending for velocity blocks and boundaries, and (3) suc-
cessive three-point optimization of ray tracing. We applied the new
method to several 2Dand 3Dgeologicalmodels to demonstrate its capa-
bility and computational efficiency in practical applications.
Fig. 2. Model 2, representing horst structures, includes several different blocks, shown in
different colors (a) and separated by triangulated interfaces (b).
2. Model parameterization

2.1. Block models

Two- and three-dimensional geological structures were discretized
in a three-step procedure following previous methods (Xu et al., 2006,
2008, 2010). We first divide the model domain into non-overlapping
sub-domains that represent different geological units or blocks. Second,
we approximate boundaries of the blocks using cubic spline interpola-
tion or triangulated interfaces. Finally, we calculate the velocity of each
block using the spatial coordinates bounded by the cubic spline interpo-
lations or triangulated surfaces (see examples given by Figs. 1 and 2).

In the 3D case, triangulated interface methods can more accurately
match the geometry of geological media and trace rays more efficiently
than the B-spline surface patches, i.e. the discrete points are not neces-
sary to be defined in a rectangular domain, no gaps would be produced
in linking triangulated patches whereas strict constraints are requisite
in B-spline linking, and thus facilitates the modification or elimination
of nodes that is necessary in approximating complex geological struc-
tures. Furthermore, the intersection between a line and a triangle can
Fig. 1. 2D blockmodel (Model 1) representing the geological characteristics of a fore-land
nappe structure along the edge of compressional basin. Different structural elements are
shown in different colors separated by cubic splines. This geological situation does not
lend itself to standard layer parameterization.
be directly computedwhereas identification of ray/B-spline patch inter-
section requires iterative modeling (Rawlinson et al., 2001; Virieux and
Farra, 1991). Hence large numbers of ray/interface intersections can be
computed quickly to save tracing time.

Triangulated interfaces have been applied in thewell-knownGOCAD
system (Mallet, 1989, 1992). The drawback of this technique is that it
generates rougher surfaces than those generated by B-spline interpola-
tion. Normal vectors held constant within a given triangle will vary
abruptly in the boundary region between two triangles that are not in
the same plane. A reflected or transmitted ray may abruptly change di-
rection at these boundaries. This situation poses challenges for ray trac-
ing methods that rely on nearby smooth ray trajectories for an optimal
solution. To address this problem, we developed an algorithm that rede-
fines normal vectors at arbitrary points on an interface in such away that
renders them continuous on thewhole interface (Xu et al., 2006). Figs. 1
and 2 show two geological models that are discretized by this block
discretization technique.

Model 1 (Fig. 1) represents a fore-land nappe structure on the pe-
riphery of a compressional basin. The Longmenshan and the Dabashan
fore-land thrust belts of the Sichuan basin and those around the Tarim
basin in China are examples of this type of geological setting. The re-
gional model contains 32 elements, 97 edges and 245 points.

Model 2 (Fig. 2a) represents horst and graben structures in an exten-
sional basin. These structures are common among basins found in the
eastern China, including the Bohai Sea and the Subei and Songliao ba-
sins. The 3D model contains 18 blocks, 6676 triangles and 2700 points.

image of Fig.�2
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Note that Fig. 2b illustrates several triangulated interfaces within the
model.
Fig. 4. Illustration of the three-point perturbation scheme and pseudo-bending methods
used to address a midpoint located inside of a given model block.
2.2. Velocity distribution within a block

Velocities within blocks may be defined by a constant or constant
gradient(Rawlinson et al., 2001; Slotnick, 1936; Xu et al., 2010), by ex-
ponential increase (Slotnick, 1936), by conic function (Ravve and
Koren, 2007) or other typical functions (Al-Chalabi, 1997) according
to the real-world medium they approximate. In order to inform general
applications, we expressed block velocities as the following trilinear in-
terpolation (Thurber, 1983):

v x; y; zð Þ ¼
X1
l¼0

X1
m¼0

X1
n¼0
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where, v(i+ l, j+m, k+ n) are velocity values at the eight points sur-
rounding a given point (e.g., point P(x, y, z) in Fig. 3). Eq. (1) ensures that
the velocity field is continuous throughout the block, even though the
velocity gradient will be discontinuous from cell to cell. Velocity distri-
butions in different blocks are defined according to different sets of
velocity grid points. Applying Eq. (1), we can calculate the velocity at
any point in the block model.
3. Ray tracing method

The segmentally iterative ray tracing (SIRT) method finds the opti-
mal traveltimes by perturbing intersection points on the interfaces
along a ray path across a constant block (Xu et al., 2006) or a constant
gradient of blocks (Xu et al., 2010). Both approaches are essentially
three-point perturbation schemes, as well as pseudo-bending ray-
tracing algorithms (Um and Thurber, 1987). To extend the method,
we adapted the previous SIRT and pseudo-bending methods to hetero-
geneous blockswhose velocities are given by Eq. (1). The newversion of
SIRT formulates the updating schemes for the perturbed midpoints in
terms of their location inside blocks or along interfaces.
Fig. 3. The velocity field for each block is defined as a grid with a discrete set of velocity
nodes. A trilinear interpolation function is used to calculate the velocity at any point
P(x, y, z) according to velocity values at the eight grid points surrounding point P.
3.1. Midpoint modification within a block

Due to its efficiency for two-point ray tracing, we adopted the
pseudo-bending scheme of Um and Thurber (1987), in which an initial
path is estimated and then perturbed by a geometric interpretation of
ray equations. Themethod thenminimizes a piecewise function to iden-
tify optimal traveltime along the path by minimizing a piecewise fash-
ion. Assuming successive points along a ray path, Pk − 1, Pk, Pk + 1 with
coordinates xk − 1, xk, xk + 1 (Fig. 4), and two fixed end-points, Pk − 1

and Pk + 1, we then search for a newmidpoint Pk′ to replace the previous
Pk,which gives the minimal traveltime along the new ray path Pk − 1, Pk′ ,
Pk + 1. The modifications include the directional vector n and distance
R (Fig. 4) calculated by the following formulae (Um and Thurber, 1987)

n′ ¼ ∇Pk
V− ∇Pk

V � xkþ1−xk−1
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where, L= |xk + 1− xmid|, c=(1/vk + 1+ 1/vk − 1)/2,∇Pk
V is the veloc-

ity gradient with respect to the midpoint Pk, Vmid is the velocity of cen-
tral point Pmid with coordinate xmid and ∇Pmid

V is the velocity gradient
at the point Pmid.
Fig. 5. Illustration of the three-point perturbation scheme and segmentally-iterative
methods used to address a midpoint located along a model block interface.
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Fig. 6. Sketch of the three-point perturbation scheme for ray tracing in a generalized het-
erogeneous media.
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3.2. Midpoint modification along interfaces

Applying Fermat's principle, we derive a general approximate for-
mula for modifying the intersection points linking two heterogeneous
velocities. As shown in Fig. 5, Pk − 1, Pk, Pk + 1 are three successive points
Given an initial ray

Select three successive ray path 

Modify the midpoints in

Modified by pseudo-bending algorithm

Iteration and conve

Double ray path seg

One more iteration and c

END

Midpoints inside the

blocks

Fig. 7. Flow chart describing the three-poin
points of intersection along a ray trajectory. Coordinates of themidpoint
Pk on the surface are given as a function of two parameters, ξ and η:

xk ¼ xk ξ; ηð Þ ð3Þ

Given fixed Pk − 1 and Pk + 1, and assuming only short distances be-
tween the three points Pk − 1, Pk and Pk + 1, the traveltime can be
expressed as a function of the midpoint coordinates xk(ξ, η)

T ¼ t1 Pk−1; xkð Þ þ t2 xk; Pkþ1
� � ð4Þ

or

T ¼ xk−xk−1j j 1=v0 þ 1=v1ð Þ=2þ xkþ1−xk
�� �� 1=v2 þ 1=v3ð Þ=2 ð5Þ

These equations differ from our previous formulae for constant
blocks (Xu et al. 2006) and constant gradient blocks (Xu et al. 2010).
The stationary traveltime satisfies the zero partial derivative at the im-
proved midpoint (ξ + Δξ, η + Δη), i.e.

∂T
∂ξ

�����
ξ¼ξþΔξ;η¼ηþΔηð Þ
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Using the first term of a Taylor series, Eq. (6) become
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Fig. 8. Illustration of the sequence of ray paths following their perturbation from an initial ray path RDES. The velocity distribution approximates that of central uplift zones found in com-
pressional basins (Model 3). The thick blue line is the final ray path after several iterations of the method.
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Fig. 9. (a) Ray tracing results for theModel 1 velocity distribution. Surface receivers (blue triangles at the surface) tracemultiple pathswhile subsurface receivers trace two ray paths (red
and teal triangles along the right boundary). (b) Calculated traveltimes marked with crosses.
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Fig. 10. (a) Illustration of the sequence of ray paths following perturbation from a three-
point initial path SPR in model showing cross-cutting relationships in a layered media
(Model 4). (b) Velocity distribution at the position y = 2.5 km.
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where the subscript i refers to the three coordinates of the midpoint.
The two parameter perturbations are calculated following (Xu et al.
2006, 2010)

Δξ ¼ U13U22−U23U12

U11U22−U12U21
;Δη ¼ U11U23−U21U13

U11U22−U12U21
; ð8Þ
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Substituting average slownesses

1
V1

¼ 1=v0 þ 1=v1
2

;
1
V2

¼ 1=v2 þ 1=v3
2

ð10Þ

for constant slownesses 1/V1 and 1/V2 (see Fig. 5) in the updating proce-
dure outlined above produces no difference in the constant velocity (Xu
et al., 2006).

The above formulations show that the perturbation formulae are all
explicit, first-order operations rather than iterative approaches like the
bisection method (Zhao et al., 1992). Since ray tracing schemes modify
millions of intersection points, the explicit, first-order versions facilitate
ray tracing in complex geologicalmodels by directly substituting the po-
sition (ξ + Δξ, η + Δη) for the primary position (ξ, η) if the updated
midpoint falls on the same interface as that of its predecessor. If not, fur-
ther analysis can determine whether intersection points should be
added or removed (Xu et al., 2006, 2010).

3.3. Three-point perturbation method of ray tracing

To implement ray-tracing in the heterogeneous block model, we
combine the pseudo-bending scheme and SIRT algorithm into a new
three-point ray tracing method that gives a ray path of transmitted
wave (Fig. 6). The initial ray path connects a shot S, and a receiver R,
through the points P1P2P3 ⋯ Pn − 1Pn (see Fig. 6), where odd numbered
points P1P3, ⋯, Pn are located within the blocks and even numbered
points P2P4, ⋯, Pn − 1 fall along boundary interfaces. Using the initial
three points RP1P2, we applied Eq. (2) or Eq. (8) to update the midpoint
P1 within the block or along the boundary interface. This correction pro-
vides a new midpoint P1′, which gives the minimal traveltime from R to
P2. Repeating this processing with a new triplet of points (e.g., P1′P2P3)
gives a new midpoint P2′ This midpoint correction process continues
until the end point S is reached, rendering a new ray path that connects
the points RP1′P2′P3′ ⋯ Pn − 1′Pn′S. The same processmay be repeated several
times to obtain themost accurate ray path for a precision of 1m in a 5 ×
5 × 5 kmmodel. Then we should double ray path segments by interpo-
lating new points that form the convergent ray path RP1′P2′P3′ ⋯ Pn − 1′Pn′S.
This procedure interpolates point Q1 as the midpoint of R and P1′, and
point Q2 as the midpoint of P1′ and P2′ and so forth, to produce new ray
path RQ1P1′Q2P2′ ⋯ QnPn′Qn + 1S. If the ray path converges with an addi-
tional iteration, then the ray tracing terminates. Otherwise, the proce-
dure continues until desired precision is reached.
In the above procedure, some points are inside of the blocks, requir-
ing that we double the segments by interpolating new points (Um and
Thurber, 1987). Because Eq. (5) implies weak heterogeneity, we must
reduce the length of the segment by interpolating new points in order
to address the assumed properties of weakness. In cases of pronounced
heterogeneity, we iteratively upgrade parameters estimated by the for-
mula until reaching the expected accuracies. Fig. 7 shows the ray-
tracing procedure in flow chart form. As shown in the flow chart, each
shot/receiver pair requires an initial ray path that is often obtained by
shooting methods. Shooting scheme however can be computationally
intensive in a heterogeneous velocity model. Here, we simply use
straight lines as the initial ray paths. It should benoted that if the receiver
is located in the shadow zone, the ray pathwill not converge during iter-
ations, or may converge to a local minima.
4. Numerical experiments

To illustrate the new ray-tracingmethod, we conducted seismic ray-
tracing using specific 2D and 3D geological models. These results dem-
onstrated the method's ability to determine the paths of transmitted,
reflected and turning waves.

image of Fig.�10
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4.1. 2D cases

Model 3 (Fig. 8) is designed to reflect central uplift zones within a
compressional basin (e.g., the Tazhong uplift zone of the Tarim basin,
China). The uplift zone typically results from peri-compressional modi-
fication of the basin and produces horst structures generated by small-
scale thrust faults. The model contains 12 elements, 41 edges and 128
Fig. 11. (a) 3D ray tracing results for Model 5, which consists of variable velocity distribu-
tions for different blocks. (b) Velocity distribution at the position y=2.5 km. (c) Calculated
traveltime isolines.
points. Shot position S and receiver R are connected by a straight line
(initial ray path), which intersects the interfaces at point D and E.
Fig. 8 illustrates the ray path iterations perturbed from the initial ray
path, RDES, associated with the velocity distribution. The thick blue
line represents the ultimate ray path after several iterations.

Fig. 9a shows the ray-tracing results of a shotwith the velocity distri-
bution given in Model 1. The computed traveltimes are given in Fig. 9b.
The thick red line in Fig. 9a indicates the reflector for traveltimes in
Fig. 9b. Note that the two receivers traced multiple paths marked
along the surface as blue triangles. Associated traveltime errors can
also be distinguished. We also show two ray paths traced to subsurface
receivers,markedwith red and teal triangles on the right boundary. The
red and teal crosses represent traveltimes (Fig. 9b), which can help con-
strain well logging activities.
4.2. 3D cases

Model 4 (Fig. 10a) is designed to represent cross-cutting and super-
position in a complex geologic medium. The model consists 5 blocks,
3635 triangles and 1681 points. Fig. 10b shows a cross-section of the
3D velocity distribution at position y = 2.5 km. The initial ray path
(straight line) connects shot position S and receiver R, and goes on to
Fig. 12. (a) Ray-tracing results for turning waves in the layered cross-cutting model
(Model 4). (b) Velocity distribution at the position y = 2.5 km.

image of Fig.�12
image of Fig.�11
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intersect the interface at point P. Fig. 10a illustrates the sequences of ray
paths as they are perturbed from initial ray path SPR. The thick blue line
shows the final ray path after several iterations.

Model 5 (Fig. 11) represent a magmatic intrusion into country rock,
assuming differentiation within themagma itself. When themagma in-
trudes overlying country rocks, it usually causes faulting of the host rock
and the formation of an extensional dome. Magmatic differentiation
resulting from fractional crystallization can generate zonation of plu-
tons and other intrusive bodies having different compositions and den-
sities, as well as metal-rich porphyries. Model 5, with a size of 5 × 5 ×
5 km, consists of normal faults, reverse faults, an intrusive mass and a
lens. The model includes 7 blocks, 4649 triangles and 2152 points.
Fig. 11b shows a cross-section of the 3D velocity distribution at position
y = 2.5 km. The upper interface of the lens is defined as the reflecting
interface. Fig. 11a shows the tracing results and traveltime isolines in
the (x, y)-plane. For the sake of clarity, only eight ray paths from the
shot are shown. The shot position and eight receivers are marked as
the red star and blue triangles, respectively in Fig. 11c.

Model 4 demonstrates the tracing of a turning ray in another velocity
distribution (Fig. 12b). The 3-D model is the same as that shown in
Fig. 10. Seven turning rays from the tracing results are shown in Fig. 12a.

To determine tracing speed, we assumed a single source and 800 re-
ceivers positioned throughout a 20 × 40 surface grid. The CPU time
(Centrino-2, 2.53 GHz) to execute SIRT in Model 5 with a precision of
0.25 m was 9.74 s. The shooting method required an additional 14.62
s and gave a precision of 0.5m. These computational times demonstrate
the efficiency of the three-point perturbation method under these con-
ditions. Note that the precision of the three-point perturbation method
is defined by the largest modifying distance along the perturbed trajec-
tory, whereas precision of the shooting method is defined by the dis-
tance between positions of the receiver and the emergence point.

4.3. Analyzing crustal and uppermost mantle structure of the Bohemian
Massif using CELEBRATION 2000 data

Specific model parameterizations make it difficult to compare the
adaptive capabilities of various ray-tracing methods. We applied our
ray-tracing method to the crustal and uppermost mantle structure of
Fig. 13. Velocity model for the crust and uppermost mantle of the Bohemian Ma
the Bohemian Massif using CELEBRATION 2000 data (Hrubcova et al.,
2005), to determine its suitability for empirical seismic imaging. The Bo-
hemianMassif includes several tectonic units separated by faults, shear
zones or thrusts, and is further described in Babuska and Plomerova
(2013), Faryad et al. (2013), Hajna et al. (2011), and Maierova et al.
(2014). The velocity profile was obtained by two-dimensional trial-
and-error forwardmodeling of seismicwaves, using the Seis83 software
package (Cerveny and Psencik, 1984).

There is no difficulty when a stratified velocity model used in pro-
gram packages of Seis83 and Seis88 (Cerveny and Psencik, 2002) is
redescribed by a block model. The 2D model interfaces are described
by cubic splines in both the Seis83 and Seis88 velocity models and in
themodels assumed in this paper. Given identical velocity distributions
from shared interpolation methods, the two methods should calculate
same way tracing results and traveltimes.

We constructed a block velocity model using data presented in
Hrubcova et al. (2005), shown in Fig. 13. Hrubcova et al. (2005) used
bi-cubic interpolation to derive the velocities between points whereas
this report used bi-linear interpolation. There are some differences in
the velocity values for profiles derived by the twomethods (e.g., an ob-
vious difference appears in the uppermost mantle at around 250 km
along the horizontal axis and 45 km depth). Fig. 14 shows ray-tracing
results calculated here superimposed over traveltimes for SP 29060 re-
ported in Hrubcova et al. (2005). The blue segments represent
traveltimes calculated by Seis83, and the red crosses give results calcu-
lated by the ray-tracing method described above. The two traveltimes
match quitewell except in a few cases forwhich the twomethods inter-
polated differences in the velocity values.

The complex geological models shown in Figs. 8 and 9 lend them-
selves to block model representation but not to 2D layer structure op-
tions in Seis83 and Seis88. The layered model options in the ANRAY
3D seismic package (e.g., Psencik and Teles, 1996)would also not suffice
in describing the complex 3D geological models addressed here (e.g.,
Figs. 2, 10 and 11). Seis83, Seis88 and ANRAY do not offer accurate ray
tracing for complex 2D and 3D models, nor do they provide adequate
earthquake location, tomography and seismic migration for more com-
plex geological settings. Model parameterization methods described in
this paper and in previous works (Xu et al., 2006, 2010), along with
ssif as derived from CELEBRATION 2000 data (Hrubcova et al., 2005; Fig. 6).

image of Fig.�13


Fig. 14. Ray tracing results (b) and calculated traveltimes (a) for subsurface structure SP 29060 (Fig. 7a in Hrubcova et al., 2005). The blue line segments denote traveltimes calculated by
Seis83 seismic software, and the red crosses denote traveltimes calculated by our ray tracing method.
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more detailed velocityfield information, make it possible to image com-
plex 3D structures with greater accuracy and detail.

5. Conclusions

Weadapted our previous SIRT seismic ray-tracingmethod to lateral-
ly heterogeneous block models, in which block velocity shows spatial
variation similar to that observed in complex geological settings. The
developments of the SIRT ray-tracing algorithm include a successive
three-point perturbation scheme that combines the previous SIRT and
pseudo-bending methods for generally heterogeneous block models.
Experiments with hypothetical 2D and 3D models demonstrate the
method's capabilities and efficiency in calculating traveltimes and ray
paths of transmitted, reflected and turningwaves in complex geological
media.

The new method applies a more general description of velocity
distributions and a highly efficient ray-tracing algorithm in modeling
complex geological settings. These capabilities represent its primary ad-
vantages over standard seismic software packages (e.g., Seis83, Seis88
and ANRAY). The new method can also perform forward modeling
steps of earthquake location, sub-surface tomography and depthmigra-
tion in seismic analysis. The primary limitation of the current version of
this method is that ray tracing derives from the first arrivals of a single
wave mode, i.e. P- or S-wave reflections, refractions and transmissions.
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