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ABSTRACT
Simultaneous estimation of velocity gradients and anisotropic parameters from seis-
mic reflection data is one of the main challenges in transversely isotropic media with
a vertical symmetry axis migration velocity analysis. In migration velocity analysis,
we usually construct the objective function using the l2 norm along with a linear
conjugate gradient scheme to solve the inversion problem. Nevertheless, for seismic
data this inversion scheme is not stable and may not converge in finite time. In order
to ensure the uniform convergence of parameter inversion and improve the efficiency
of migration velocity analysis, this paper develops a double parameterized regular-
ization model and gives the corresponding algorithms. The model is based on the
combination of the l2 norm and the non-smooth l1 norm. For solving such an in-
version problem, the quasi-Newton method is utilized to make the iterative process
stable, which can ensure the positive definiteness of the Hessian matrix. Numeri-
cal simulation indicates that this method allows fast convergence to the true model
and simultaneously generates inversion results with a higher accuracy. Therefore,
our proposed method is very promising for practical migration velocity analysis in
anisotropic media.

Key words: VTI media, Migration velocity analysis, Double parameterized regular-
ization, Quasi-Newton method.

INTRODUCTION

Robust estimation of seismic velocities from reflection data
plays an essential role in subsurface imaging and character-
istic analysis of complex reservoirs (Alkhalifah and Tsvankin
1995; Alkhalifah 1997). Numerous examples demonstrate
that application of prestack depth migration with anisotropic
migration velocity analysis (MVA) for building a velocity
model can yield significantly improved images (Berkhout
1997; Zhou, Guo and Young 2001; Li and Biondi 2011;
Weibull and Arntsen 2012). Generally speaking, there are
two feasible strategies for velocity estimation in the context
of depth migration. The two strategies differ by the domain
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in which the information is used to update the velocity model
(Sava and Vlad 2008). The first strategy is formulated in the
data space before migration, and it involves matching the
recorded data with the simulated data obtained by using an
approximate background velocity model. Lots of intensive
and classic work about this strategy has been done. Based
on synthesis of common focus point (CFP) gathers, Berkhout
(1997) proposed a procedure for velocity analysis. Biloti,
Santos and Tygel (2002) considered a velocity model inversion
scheme by using common reflection surface (CRS) parame-
ters. The second strategy is formulated in the image space after
migration, and it involves measuring and correcting image
features that indicate the model’s inaccuracies. Techniques in
this category are known as MVA. The initial work on MVA
(Yilmaz and Chambers 1984) demonstrated the potential
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of using common image gathers (CIGs) for the velocity
inversion process. Liu and Bleistein (1995) analysed the prop-
erties of CIGs and derived analytic formulae to represent resid-
ual moveout in MVA. Alkhalifah (1995) developed a method
of velocity analysis for transversely isotropic media based on
the inversion of P-wave normal moveout (NMO) velocities
with dip angle dependence. Zhou et al. (2001) proposed
a tomographic method for MVA, where they solved linear
equations to obtain the layer velocity and anisotropic param-
eters. Sarkar and Tsvankin (2003, 2004) presented a two-
dimensional (2D) MVA algorithm designed to simultaneously
estimate the spatially varying velocity along with the Thom-
sen parameters ε and δ in factorized transversely isotropic
media with a vertical symmetry axis (VTI) media. Charles
et al. (2008) suggested a data-driven reflection tomography ve-
locity model-building approach by using an automated global
tomography method. Wang and Tsvankin (2011) advanced a
P-wave tomographic algorithm for estimation of the
symmetry-direction velocity and the anisotropic parameters
ε and δ.

However, unlike the types of isotropic velocity analy-
sis (Stork 1992), the quality of anisotropic velocity analysis
(Grechka and Tsvankin 1999; Tsvankin 2001; Woodward
et al. 2008; Liu 2010; Li and Biondi 2011; Weibull and
Arntsen 2012) suffers from the trade-offs between anisotropic
parameters, velocity variation and reflecting interface dips.
For practical applications, a typical way is to assume that the
model is layered or blocked and then update the velocities
and the Thomsen (1986) anisotropic parameters iteratively
(Grechka, Pech and Tsvankin 2002; Behera and Tsvankin
2009). In this paper, our velocity analysis work is focused
on factorized VTI media, which provides a convenient way
of building vertically and laterally heterogeneous anisotropic
models for prestack depth migration (Alkhalifah 1995; Sarkar
and Tsvankin 2003, 2004).

In view of the inversion theory, MVA for seismic data is a
non-linear inversion problem (Adler et al. 2008) which can be
solved by iterative application of migration and velocity up-
dating. Costa et al. (2008) introduced a regularization scheme
for slope tomography by using reflection-angle-based smooth-
ness as a constraint and compared the effects with three other
conventional constraints. The smoothness constraint has a dis-
tinct effect on the velocity model but a weak effect on migrated
data, thus leading to geologically more consistent models. To
estimate the optimum earth velocity model, people usually
minimize a user-defined residual image. This corresponds to
the construction of an objective function according to the l2
norm, and the linear conjugate gradient scheme is used to solve

such an inversion problem. However, the inversion result may
be unstable and non-unique (Zhang and Yang 2003; Wang,
Yang and Duan 2009). In addition, MVA is a very time-
consuming process in seismic data inversion. Therefore, it is
necessary to optimize the objective function to reduce the non-
uniqueness and improve the efficiency of velocity updating.

We study the double parameterized regularization inver-
sion method for MVA in factorized VTI media. This method
combines the benefits of the l2norm and the l1 norm, which fits
the real data using the l2 norm and reduces the non-uniqueness
and outliers by the l1 norm constraint. The reason for propos-
ing double parameterized regularization is that the horizontal
and vertical velocity gradients and the unknown anisotropic
parameters may possess non-smoothing information as they
cross the boundaries of the layers or blocks. A double pa-
rameterized regularization algorithm can ensure the uniform
convergence of anisotropic media parameter inversion, and
thus reduce iteration numbers during the process of MVA. In
this way, efficiency of MVA can be highly improved.

METHODOLOGY

Migration velocity analysis

Sarkar and Tsvankin (2004) introduced a migration velocity
analysis algorithm specially designed for piecewise-factorized
VTI media, which includes the following four main steps:

1. Use prestack depth migration with an initial estimation of
medium parameters to create an image of the subsurface.
2. Pick reflectors in each VTI block to delineate the reflector
shapes on the migrated section.
3. Use semblance scanning to evaluate the residual moveout
of reflection events in CIGs.
4. Update the medium parameters prepared for the next ap-
plication of prestack depth migration.

Repeat the above four steps until the events in the image
gathers become sufficiently flat.

Model parameterization

The algorithm for P-wave MVA is designed for geological
models composed of factorized VTI layers or blocks with a
linear velocity functionVP0(x, z):

VP0(x, z) = VP0(x0, z0) + kx(x − x0) + kz(z − z0), (1)

where VP0(x0, z0) is the value at a specific point (x0, z0), kx and
kz are horizontal and vertical velocity gradients, respectively.

Using common sense, depth imaging of P-wave data re-
quires the knowledge of five parameters (VP0, kx, kz, ε and δ)
in each layer or block.
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Table 1 Parameters of the VTI media model.

Parameters VP0(0, 0)(m/s) kx
(
s−1

)
kz

(
s−1

)
ε δ

Accurate values 2000 0.200 0.600 0.300 0.100
Initial values 2000 0.100 0.300 0.000 0.000

P-wave space-time domain signatures in VTI media are
fully controlled by the NMO velocity and the anellipticity
coefficient η, and are independent of the vertical velocity
(Alkhalifah, Fomel and Biondi 2001). Sarkar and Tsvankin
(2004) showed that for models without significantly changing
dips above the target layer, the moveout of events in CIGs is
governed by the following four combined parameters:

1. The NMO velocity at a certain point on the surface of each
factorized layer or block, Vnmo = VP0

√
1 + 2δ.

2. The vertical velocity gradient, kz.
3. The modified lateral velocity gradient combined with the
parameter δ, k̂x = kx

√
1 + 2δ.

4. The anellipticity parameter, η = ε−δ

1+2δ
.

In their assumption, the velocity VP0 has to be known
at a certain point within the factorized layers or blocks to
decouple the horizontal gradient kxfrom the coefficient δ and
to determine another anisotropic coefficient ε (Tsvankin and
Thomsen 1994; Sarkar and Tsvankin 2003).

Residual moveout equation

Sarkar and Tsvankin (2004) estimated the vertical velocity
gradient kz using two reflectors located at different depths in
each factorized layer or block. To constrain the parameter
η (and therefore ε and δ), the residual moveout in CIGs is
described by the following non-hyperbolic equation:

z2
M(h) ≈ z2

M(0) + r1h2 + r2
h4

h2 + z2
M(0)

, (2)

where zM is the migrated depth and h is the half-offset. The
coefficients r1 and r2, which quantify the magnitude of resid-
ual moveout, are estimated by 2D semblance scanning. The
goal of the iterative MVA algorithm is to make events in CIGs
flatten by minimizing coefficients r1 and r2. The coefficient r2

has great sensitivity to the parameterη, which assumes respon-
sibility for non-hyperbolic moveout at long offsets.

Double parameterized regularization model

To simplify a general non-linear inverse (minimization) prob-
lem, we perform the MVA iteratively. Assuming that some
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Figure 1 Prestack depth migration image with the initial model
parameters.

iterations of MVA have been implemented, the prestack depth
migration produces the migrated depths z0(xj , hk), (xj is the
midpoint of the j-th image gather, hk is the half-offset), and
ẑ(xj ) = (1/M)

∑M
k=1 z(xj , hk) is the average migrated depth of

a reflection event with M the number of offsets in each image
gather.

We iteratively update the parameter vector λ (its elements
are kx, kz, ε and δ) by minimizing the following objective func-
tion using a double parameterized regularization model:

J α,β (�λ) = 1
2

∥∥A�λ + b
∥∥2 + β

2

∥∥�λ − �λ0
∥∥2 + α	(�λ),

(3)

where A is a matrix with M × P rows (P is the number of im-
age gathers used for velocity updating) and N columns whose
elements are the derivatives of the migrated depths with re-
spect to the medium parameters [∂z0(xj , hk)/∂λi ] and b is a
vector with M × P elements defined by z0(xj , hk) − ẑ0(xj ). The
model-update �λ is a vector, �λ0 is the initial guess vector of
medium parameters, and α and β are regularization parame-
ters. In each step of MVA, the parameter vector λ is updated by
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Figure 2 Prestack depth migration image with the actual model
parameters.

Figure 3 Semblance scan for the first reflector in the initial model;
the lateral coordinate is 3 km.

Figure 4 Semblance scan for the first reflector after seven iterations;
the lateral coordinate is 3 km.
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Figure 5 Stacked image for the model after seven iterations using the
double parameterized regularization method.
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Figure 6 Residual moveout in image gathers for both reflectors in the
model at the surface location 3km: (a) for the initial model; (b) after
one, (c) two, (d) three, (e) four, (f) five, (g) six and (h) seven iterations,
(i) for the true model.

an initial value of λ plus �λ. The non-smooth function 	(�λ)
is defined as a Huber norm function (Wang et al. 2011a):

	(�λ) =
∑

i

hε̃(�λi ),

where hε̃ (·) is defined as a non-linear piecewise function

hε̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2

2ε̃
, 0 ≤ x ≤ ε̃,

x − ε̃

2
, x > ε̃ > 0,

−x − ε̃

2
, −x < −ε̃ < 0,

and ε̃ is a small constant parameter. Clearly, as ε̃ → 0	 (�λ)
approximates the l1 norm very well.

Quasi-Newton method

Supposing H(�λ) is the Hessian matrix of the function
J α,β (�λ), we use its approximation value instead of the ex-
plicit formula of H(�λ). In the optimization community,

Table 2 Inversion results of MVA in VTI media.

Iterative
Methods numbers kx(s−1) kz(s

−1) ε δ

Double 7 0.199202 0.594767 0.306139 0.108021
regularization

α = 0, β �= 0 12 0.198259 0.591786 0.309300 0.108622
β = 0, α �= 0 11 0.197690 0.586840 0.310857 0.111154

Table 3 Inversion errors of MVA in VTI media.

kx kz ε δ

Iterative error error error error
Methods numbers (%) (%) (%) (%)

Double 7 −0.399 −0.872 2.046 8.021
regularization

α = 0, β �= 0 12 −0.871 −1.369 3.100 8.622
β = 0, α �= 0 11 −1.155 −2.193 3.619 11.154

quasi-Newton methods can be used to solve the non-linear
and non-quadratic minimization problems. The essence is us-
ing correction formulae to ensure the positive definiteness of
the approximate Hessian matrix. Generally speaking, New-
ton’s method needs the second-order partial derivatives to be
calculated, while the quasi-Newton method only requires the
first-order partial derivatives to ensure fast convergence (Yuan
and Sun 1997). Therefore, we use the quasi-Newton method
to solve our minimization problem (Appendix).

The gradient of the function J α,β (�λ) with respect to
medium parameters is as follows:

g (�λ) =AT (A�λ + b) + αK (�λ) + β
(
�λ − �λ0), (4)

where the function K (�λ) is defined as:

K(�λ) =
[

∂	

∂�λ1
, . . . ,

∂	

∂�λP

]T

,

and ∂	

∂�λi
= ∑

i h′ε̃(�λi ), the derivative of hε̃(x), is given by

h′
ε̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x
ε̃
, 0 ≤ x ≤ ε̃,

1, x > ε̃ > 0,

−1, x < −ε̃ < 0.

Supposing B ≈ H−1(�λ), the gradient of the function
J α,β (�λ) in the k-th iteration is defined as gk = g(�λk), and
the direction for updating medium parameters is defined as
sk = (�λ)k+1 − (�λ)k. Therefore, the next model parameters
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Table 4 Parameters of the fault model.

Parameters VP0(0, 0)(m/s) kx
(
s−1

)
kz

(
s−1

)
ε δ

Accurate values 2100 0.100 0.500 0.200 0.100
Initial values 2100 0.000 0.000 0.000 0.000

can be updated using the following equations (Wang, Yagola
and Yang 2011b):{

(�λ)k+1 = (�λ)k + ωkdk,

dk = −Bkgk,

where the matrix Bk is calculated using the following
formulae:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Bk+1 = VT
k BkVk + ρksks

T
k ,

ρk = 1
yT

k sk
,

Vk = I − ρkyks
T
k ,

yk = gk+1 − gk.

(5)

The parameter ωk is the step size, which can be obtained
by the Wolfe line search criterion, i.e. the parameter ωk should
satisfy the following two conditions (Yuan and Sun 1997):

J α,β (�λk + ωkdk) ≤ J α,β (�λk) + rωkg
T
k dk, (6)

dT
k gk+1 ≥ r̃dT

k gk, (7)

where r and r̃ are two constant numbers requiring 0 < r <

r̃ < 1. In our numerical experiments, we fix values of r as 0.1
and r̃ as 0.4.

The inversion algorithm flow chart can be described as
follows.
Step 1. Use initial medium parameters �λ0, a constant pa-
rameter rand a symmetric positive definite matrix B0 (B0 can
be an identity matrix), and set k = 0.
Step 2. Compute g(�λk). If ‖g(�λk)‖ < ξ. max{1, ‖g(�λ0)‖}
(where ξ < 0.1), STOP; otherwise, GOTO Step 3.

Step 3. Compute

{
dk = − Bkgk,

�λk+1 = �λk + ωkdk,
where ωk satisfies

equations (6) and (7).
Step 4. Set k = k + 1, and update Bk by formulae (5); GOTO
Step 2.

Remark 1 In practical applications, the inversion al-
gorithm can be realized with limited-memory storage by
formulae (5) to build the updating matrix. This can be clearly
seen from the following equation:

Bk+1 = (VT
k VT

k−1 · · · VT
k−m̂)B0(Vk−m̂ · · · Vk−1Vk)

+ ρk−m̂(VT
k VT

k−1 · · · VT
k−m̂+1)sk−m̂sT

k−m̂(Vk−m̂+1 · · · Vk−1Vk)
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Figure 7 Prestack depth migration image with the initial fault model
parameters.

+ ρk−m̂+1(VT
k VT

k−1 · · · VT
k−m̂+2)sk−m̂+1sT

k−m̂+1

× (Vk−m̂+2 · · · Vk−1Vk) + · · · +ρksks
T
k .

Therefore, the algorithm can be fast realized in computa-
tion only by storing si , yi in practical calculations.

Remark 2 Stopping criteria is a key issue for an inversion
algorithm. For general inverse problems, there exists a ‘satura-
tion’ state of approximation for the iterative algorithm, which
means that the magnitude of the error of a solution must be
in agreement with the accuracy of the assignment of the input
data (Wang 2007). So a proper stopping criterion is needed.
If we consider the conventional gradient energy value as the
stopping criterion, it will fall into too many iterations and
lead to the accumulation of computing errors. Therefore, we
choose ‘if ‖g(�λk)‖ < ξ · max{1, ‖g(�λ0)‖} is satisfied, then
we terminate the iteration’ as the stopping criterion, where ξ

is a user-controlled parameter and ξ < 0.1 is usually required.
Of course, this choice of stopping criterion is not optimal. In
the inversion community, other stopping rules may be applied,
for example using the norm of the discrepancy between the
data and its approximate values.
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Figure 8 True image of the fault model obtained by anisotropic
prestack depth migration with the true medium parameters.

The principles of choosing regularization parameters

Regularization parameters α and β in the objective function
(equation (3)) play a key role in inversion implementation.
Principles of choosing suitable regularization parameters can
be given as follows:

1. If α = 0,β>0, the objective function (equation (3)) will de-
generate into a smoothly controlled regularization model. And
if β is chosen beyond the range of the anisotropic medium’s
parameter values (e.g. β is too large), then inaccurate inver-
sion results will occur. Of course, this case will rarely appear,
as long as prior information is considered.
2. If β = 0,α>0, we will obtain a non-smoothly controlled
regularization model from the objective function (equation
(3)). Apparently, if α is too large, the minimization problem
will be transformed into a model primarily characterized by
a non-smooth property. In such a case, the solution of the
inverse problem is usually not unique, and some additional
constraints must be adopted to determine a suitable result.
3. If α>0, β>0, the optimal inversion results can be obtained
by choosing parameters α and β properly. We notice that kx

and kz are the horizontal and vertical velocity gradients, re-
spectively, and ε and δ are the unknown anisotropic param-
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Figure 9 Stacked image for the fault model after seven iterations using
the double parameterized regularization method.

eters in the factorized VTI media model; therefore, a double
regularization parameters algorithm can provide more accu-
rate inversion results of media model parameters than the
single regularization parameters algorithm.

In numerical calculations, we choose the regularization
parameters α and β according to the Tikhonov regularization
theory. As the values of α and β tend to 0 but are greater
than 0, the inversion parameters will be close to the true
values. Therefore, we choose α and β in an a priori way:
0 < β< α < 0.1.

NUMERICAL EXPERIMENTS

Factorized VTI layer with smooth interface

First, we consider two smooth reflectors embedded in a
factorized VTI media with a linear variation velocity. The
anisotropic parameters ε, δ are taken to be constant values.
The SUSYNLVANTI code in Seismic Unix (SU) is utilized
to make synthetic common shot records, with shot interval
equalling 50 m, trace interval equalling 50 m and number
of traces, 40. Number of the time sample is taken as 1000
with a sampling interval of 4 ms. The Ricker wavelet with a
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Figure 10 Residual moveout in image gathers for both reflectors in
the fault model at the surface location 3km: (a) for the initial model;
(b) after one, (c) two, (d) three, (e) four, (f) five, (g) six and (h) seven
iterations, (i) for the true model.

Table 5 Inversion results of MVA for fault model.

Iterative
Methods numbers kx(s−1) kz(s

−1) ε δ

Double 7 0.100580 0.492163 0.207252 0.097006
regularization

α = 0, β �= 0 12 0.103151 0.514373 0.204577 0.083205
β = 0, α �= 0 10 0.097445 0.509139 0.222591 0.095361

predominant frequency of 30 Hz is utilized. In the procedure
of carrying out MVA, horizontal imaging coordinates ranging
from 2 to 4 km are used to produce CIGs.

Prestack depth migration

Prestack depth migration has a great advantage in imaging
problems of complex media (Liu 1997). Residual depth move-
out in CIG has high sensitivity to model parameters, which
makes prestack depth migration a powerful tool for veloc-
ity analysis. The initial model in MVA is supposed to use an

Table 6 Inversion errors of MVA for fault model.

kx kz ε δ

Iterative error error error error
Methods numbers (%) (%) (%) (%)

Double 7 0.580 −1.567 3.626 −2.994
regularization

α = 0, β �= 0 12 3.151 2.875 2.289 −16.795
β = 0, α �= 0 10 −2.555 1.828 11.296 −4.639
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Figure 11 True image of the anticline model obtained by anisotropic
prestack depth migration with the actual medium parameters.

isotropic medium. Through well data, velocity at some posi-
tion on the surface is known in advance as VP0(0, 0) = 2000
m/s, as shown in Table 1. The prestack depth migration result
is illustrated in Fig. 1. In order to explain how model param-
eters influence the results of the prestack depth migration, the
imaging section with accurate model parameters is shown in
Fig. 2. Comparison between Figs 1 and 2 indicates that an
inaccurate elastic modulus has a direct effect on the focusing
of the migration wave field, especially in the positioning of
reflectors.
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Figure 12 One of the noise-contaminated shot gathers (the lateral
coordinate is close to 3 km).

Table 7 Parameters of the anticline model.

Parameters VP0(x0, z0)(m/s) kx(s−1) kz(s
−1) ε δ

Accurate values 2000 0.02 0.50 0.00 0.00
Accurate values 2350 0.05 0.30 0.10 0.08
Initial values 2000 0.00 0.00 0.00 0.00
Initial values 2350 0.00 0.00 0.00 0.00

Migration velocity analysis

Now we present the parameter inversion process of this nu-
merical simulation example using the proposed method.

Picking curves of reflectors

Curves of migration reflectors are picked on the prestack
depth imaging section of the initial model, as displayed in
Fig. 1, which will be taken as input data for inversion of
zM(0), reflector dips and other parameters.

Fitting curves of residual depth moveout

According to the residual depth moveout equation
(equation (2)), a semblance scanning method is used to ob-
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Figure 13 Image gathers for the anticline model obtained with the
homogeneous, isotropic initial model.

tain the energy spectra of r1 and r2 for each reflector, as
shown in Fig. 3. Through picking the best energy focusing
point in energy spectra, optimal values of r1 and r2 will be
obtained, which are other inputs for parameter inversion. At-
tention should be paid to the fact that although r1 and r2

couple with each other, both of them will tend to zero with
iterations of MVA (see Figs 3 and 4). This phenomenon can
be easily seen from equation (2).

Updating model parameters

The stacked image after seven iterations illustrates im-
provements in focusing and positioning of the two reflectors
during the velocity updating. Events in CIG are flattened, and
r1 and r2 tend to zero, which can be seen in Fig. 5.

In order to make the convergence process more visible,
especially for event changes in CIG, a gather including two
reflectors at 3 km position is illustrated in Fig. 6. In this fig-
ure, migration results with the initial model (furthest left), the
model after seven iterations, and the true model (furthest right)
are given. Figure 6 vividly illustrates that events in the image
gather gradually tend to be flattened, with residual moveout
converging to zero. After the sixth iteration, although events

C© 2014 European Association of Geoscientists & Engineers, Geophysical Prospecting, 62, 1040–1053



Migration velocity analysis in VTI media 1049

0

500

1000

1500

2000

D
ep

th
 (

m
)

2000 2500 3000 3500 4000
Midpoint (m)

Figure 14 Prestack depth migration image with the initial anticline
model parameters.

in CIG are flat and energy spectra of r1 and r2 are basically
zero, the seventh iteration is still done and chosen as the final
result, just for the sake of model convergence.

Table 2 illustrates the inversion results of the proposed
double parameterized regularization method and the single
parameterized regularization method (α = 0 or β = 0 in the
objective function). Iteration numbers verify that the double
parameterized regularization inversion algorithm converges to
the true model faster than the single parameterized regular-
ization MVA algorithm. The proposed method dramatically
improves the efficiency of the MVA, which shows great possi-

bility of potential applications for three-dimensional (3D) high
density survey. Table 3 demonstrates another merit of the dou-
ble parameterized regularization method, which can reduce er-
rors of anisotropic parameters to a smaller degree and highly
improve convergence accuracy of the objective function. This
phenomenon can be confirmed from the fact that the dou-
ble parameterized regularization method is built on a more
elaborate model which supplies sufficient constraints to inver-
sion parameters with both smoothness and non-smoothness.
Also, the quasi-Newton correction formulation can always
secure the positive definiteness of the Hessian matrix, which
makes the iteration process more stable.

Fault layers model

In our second synthetic example, the geology mode is designed
to be a fault layered model with two reflectors in a factorized
VTI half space. Kirchhoff prestack depth migration with the
actual model parameters generates an accurate image of all
reflectors, which is shown in Fig. 8. For the MVA, we use im-
age gathers located between 2 and 4 km, with the maximum
offset-to-depth ratio close to two. The velocity is assumed
to be known at one location VP0(0, 0) = 2100 m/s and the
parameters kx, kz, ε and δare to be updated. For field appli-
cations, VP0 can be obtained from checking shots or sonic
logs acquired in a vertical borehole. The initial model consists
of homogeneous and isotropic layers. Image gathers obtained
with the initial model parameters (in Table 4) exhibit sub-
stantial residual moveout, which is demonstrated in Fig. 10.
Kirchhoff prestack depth migration with initial model param-
eters is illustrated in Fig. 7. After seven iterations, the residual
moveout for all reflectors is practically eliminated, and the
reflectors are properly positioned (Fig. 9). Comparing Fig. 9
with Fig. 7 reveals that our proposed method exhibits great
improvements in both focusing and positioning of reflectors.
The magnitudes of the residual moveout for both reflectors are

Table 8 Inversion results of MVA for anticline model.

Iterative
Methods numbers kx(s−1) kz(s

−1) ε δ

Double regularization 7 0.019643 0.490261 0.002041 0.001822
Layer 1 α = 0, β �= 0 7 0.018838 0.474572 0.003370 0.003260

β = 0, α �= 0 7 0.016712 0.467559 0.004359 0.005972
Double regularization 9 0.045406 0.305689 0.108418 0.066282

Layer 2 α = 0, β �= 0 9 0.040491 0.312740 0.109783 0.052037
α = 0, β �= 0 9 0.053321 0.346568 0.106118 0.056865
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Figure 15 Prestack depth migration image for the anticline model
with the inverted parameters using our double parameterized regular-
ization method.

convergent to their actual values, and events in image gather
gradually tend to be flattened (see Fig. 10).

Table 5 shows that the inversion parameters are much
closer to the correct values using the double parameterized
regulation method. Furthermore, errors of anisotropic pa-
rameters are smaller using our proposed method than that
of the single parameterized regulation method (see Table 6).
Simulation results of the example demonstrate efficiency and
reliability of our proposed double parameterized regulation
method in MVA.

Anticline model

Finally, we apply the algorithm to a VTI anticline model with
dips up to 30° under an isotropic layer. The isotropic layer and
the VTI layer are both vertically and laterally heterogeneous.
Each layer contains two reflecting interfaces, as required by
the MVA algorithm, with every second reflector serving as the
boundary between layers. Anisotropic prestack depth migra-
tion with the correct model parameters (Table 7) for all layers
is shown in Fig. 11. To assess the stability of our algorithms,
we add random uncorrelated Gaussian noise to the synthetic
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Figure 16 Image gathers for the anticline model obtained using our
double parameterized regularization method (Table 8).

data as shown in Fig. 12. We apply our MVA algorithm to ten
image gathers located at horizontal coordinates ranging from
2 to 4 km with a maximum offset of 3 km. The medium pa-
rameters are estimated using a layer-stripping strategy starting
at the surface.

The initial velocity model (Table 7) used in the first itera-
tion of MVA is homogeneous and isotropic. For the first layer,
the velocity VP0 is assumed to be known at a single surface
location VP0(3000, 0) = 2000 m/s. We carry out parameter
estimation for the second layer using the correct value of the
vertical velocity at this point VP0(3000, 600) = 2350 m/s.
Because the initial model parameters are strongly deviated
from the true values, the events exhibit significant residual
moveout (Fig. 13) and the depth of migration image is inaccu-
rate (Fig. 14). With our double parameterized regularization
method, the inverted parameters (Table 8) are close to the true
values in all layers, and the migrated image (Fig. 15) is practi-
cally improved in both focusing and positioning of reflectors.
After several iterative implementations of the prestack depth
migration and velocity updating, all events in CIGs become
sufficiently flat (Fig. 16).
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With the same number of iterations for all three types
of regularization methods, the inversion parameters are much
closer to the correct values using our double parameterized
regularization method than the results of single parameterized
regularization methods (see Table 8).

CONCLUSION

We designed a double parameterized regularization inversion
method for MVA in a factorized VTI medium. Compared with
the single parameterized regularization method, our double
parameterized regularization method can dramatically reduce
iteration numbers of MVA, and thus improve the efficiency of
velocity model updating. The inversion errors of anisotropic
parameters decrease more using the proposed double parame-
terized regularization method than with the single parameter-
ized regularization method. In pursuing our algorithm’s sta-
bility in inverting velocity model parameters, a quasi-Newton
method is adopted to ensure the positive definiteness of the
Hessian matrix during iterations. In particular, the double pa-
rameterized regularization inversion algorithm is not limited
to factorized VTI velocity model inversion problems, which in
theory can be extended to other geophysical inversion prob-
lems as long as a proper objective function can be constructed.
In choosing regularization parameters α and β for field appli-
cations, additional information has to be provided in advance
to constrain their values to a more proper range. In the general
situation, values of α and β are less than 0.1 and bigger than
0. Further investigation may be conducted by incorporating
well log data information into constructing a more compre-
hensive objective function, in that case direct inversion may be
carried out. Numerical simulations demonstrate that the pro-
posed double parameterized regularization inversion method
possesses attractive property in efficiency, stability and accu-
racy, and has potential applications in tackling a huge amount
of manual velocity model building problems.
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APPENDIX

QUASI -NEWTON FOR MULA E

The quasi-Newton method for a general non-linear minimiza-
tion problem (Yuan and Sun 1997)

min f (x), x ∈ X, (A1)

refers to the following iterative formula: for k = 1, 2, ...,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gk = ∇ f (xk),
dk = −Bkgk,

xk+1 = xk + ωkdk,

ωk obtained by line search,

yk = gk+1 − gk,

sk = xk+1 − xk,

Bk+1yk = sk.

(A2)

To use the quasi-Newton method, the quasi-Newton condi-
tion

Bk+1yk = sk, (A3)

must be satisfied. A popular formula for updating Bk is given
by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method,
given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Bk+1 = VT
k BkVk + ρksks

T
k ,

ρk = 1
yT

k sk
,

Vk = I−ρkyks
T
k .

(A4)

Recalling our objective function is a non-linear
functionJ α,β (�λ) (see equation (3)), the gradient of J α,β can
be evaluated as

g (�λ) = d
d�λ

J α,β (�λ) = 1
2

d
d�λ

∥∥A�λ + b
∥∥2

+ β

2
d

d�λ

∥∥�λ − �λ0
∥∥2

+ α
d

d�λ
	 (�λ) . (A5)

Since

∥∥A�λ + b
∥∥2 = (A�λ + b, A�λ + b) ,∥∥�λ − �λ0
∥∥2 = (

�λ − �λ0, �λ − �λ0
)
,

	 (�λ) =
∑

i

hε̃ (�λi ),

taking derivatives of the above three functions about �λ yields

g(�λ) = AT(A�λ + b) + αK(�λ) + β(�λ − �λ0), (A6)

as K(�λ) is given by

K(�λ) =
[

∂	

∂�λ1
, . . . ,

∂	

∂�λP

]T

,
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and ∂	

∂�λi
= ∑

i h′ε̃(�λi ). Thus the following equations will be
used during iteration⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gk = g(�λk),
dk = −Bkgk,

�λk+1 = �λk + ωkdk,

ωk obtained by line search

(A7)

and Bk is updated using equations (A4). For implemen-
tation of the quasi-Newton method, one has to solve
ωk using some line search techniques. This requires

solving a non-linear one-dimensional (1D) minimization
problem

ωk = arg min
ω

J α,β (�λk + ωdk) . (A8)

We can solve equation (A8) exactly or approximately.
Since ωk is a trial step in each iteration, it is unnecessary to
solve it exactly. There are many useful inexact line search
methods, for example Wolfe line search (see equations (6)
and (7)), Armijo-Goldstein criterion, Powell line search, and
so on (Fletcher 1987; Yuan and Sun 1997).
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