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ABSTRACT

The staggered-grid finite-difference (FD) method is widely
used in numerical simulation of the wave equation. With sta-
bility conditions, grid dispersion often exists because of the
discretization of the time and the spatial derivatives in the wave
equation. Therefore, suppressing grid dispersion is a key prob-
lem for the staggered-grid FD schemes. To reduce the grid dis-
persion, the traditional method uses high-order staggered-grid
schemes in the space domain. However, the wave is propa-
gated in the time and space domain simultaneously. Therefore,
some researchers proposed to derive staggered-grid FD
schemes based on the time-space domain dispersion relation-
ship. However, such methods were restricted to low frequen-
cies and special angles of propagation. We have developed a
regularizing technique to tackle the ill-conditioned property of
the symmetric linear system and to stably provide approximate
solutions of the FD coefficients for acoustic-wave equations.
Dispersion analysis and seismic numerical simulations deter-
mined that the proposed method satisfies the dispersion rela-
tionship over a much wider range of frequencies and angles
of propagation and can ensure FD coefficients being solved
via a well-posed linear system and hence improve the forward
modeling precision.

INTRODUCTION

Finite-difference (FD) methods for acoustic-wave equations are
widely applied in seismic wave simulations because of the effi-

ciency of computation, over memory requirements, and simplicity
of realization. These methods also constitute the basis for reverse-
time migration and full-waveform inversion (Alford et al., 1974;
Kelley et al., 1976; Alkhalifah, 2000; Basabe and Sen, 2007; Yang
etal., 2012). Meanwhile, grid dispersion is one of the key numerical
problems when using FD methods. An FD scheme dominated by
spatial dispersion delays higher frequencies, whereas an FD scheme
dominated by temporal dispersion advances higher frequencies
(Dablain, 1986).

To reduce the grid dispersion, two methods could be applied: the
traditional method using high-order staggered-grid schemes in the
spatial domain and the method of using shorter time and spacing grid
intervals. Higher order approximations of spatial derivatives and tem-
poral derivatives are usually applied to increase accuracy and reduce
grid dispersion (Chen, 2007, 2011; Chu and Stoffa, 2012; Liang et al.,
2013b). Generally, the spatial FD coefficients are determined only in
the spatial domain. However, wave equations are solved in the tem-
poral and spatial domains simultaneously (Finkelstein and Kastner,
2007, 2008; Liu and Sen, 2009, 2011; Liang et al., 2013a). Finkel-
stein and Kastner (2007, 2008) propose a systematic design method-
ology for obtaining FD coefficients to reduce dispersion, which
allows the exact phase velocity or (and) group velocity dispersion
relationship to be satisfied at some designated frequencies in the tem-
poral-spatial domain. Liu and Sen (2009) propose a new time-space-
domain method to determine the higher order FD coefficients for 1D,
2D, and 3D wave equations, and then they use this method to get
variable length FD coefficients (Liu and Sen, 2011). Etgen (2007)
proposes minimization of the phase-velocity error in the range of
frequencies and prorogation-angles of interest, based on a weighted
least-squares method. Gauss-Newton solution method are also con-
sidered in Etgen (2007). Zhang and Yao (2013) propose using the
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simulated annealing algorithm and give an error limitation for deter-
mining the FD coefficients in space or time-space domain. Liu et al.
(2014) propose an explicit time-evolution method to simulate wave
propagation in acoustic media with high temporal accuracy. They
find that in constant density acoustic media, including slightly more
stencil points, could significantly reduce the inaccuracy at low wave-
numbers.

Advantages of the staggered-grid FD methods are that they pos-
sess greater accuracy and better stability than traditional FD meth-
ods. Many results have been achieved using the staggered-grid FD
scheme of spatial partial derivatives thus far. Liu and Sen (2011)
introduce the time-space domain method into the staggered-grid
FD simulations of the acoustic-wave equations. They use Taylor
expansion in the wavenumber direction to establish a system of lin-
ear equations and to determine the FD coefficients in a fixed angle
of wave propagation. Their method could indeed improve the for-
ward modeling precision.

Numerical experiments of the time-space staggered-grid FD
method reveal that (1) Taylor expansion in the wavenumber direc-
tion restricts the dispersion relationship to be preserved only in
limited wavenumbers, (2) determining the FD coefficients using
the dispersion relation in a particular wave-propagation direction
may lead to loss of precision in other directions and may also induce
numerical anisotropy, and (3) the linear system is symmetric and
ill-conditioned. In this paper, we propose a new method to satisfy
the dispersion relationship in a much wider range of frequencies
and angles of propagation. We also propose a regularizing tech-
nique to tackle the ill-conditioned property of the symmetric linear
system and to stably provide approximate solutions of the FD
coefficients.

FINITE-DIFFERENCE METHODS USING
STAGGERED-GRID SCHEMES IN THE TIME-
SPACE DOMAIN

We consider the 3D acoustic-wave equation:
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where p denotes the density, p represents the pressure, K is the bulk
modulus such that K = 1+ 2u = pv? with v being the wave veloc-
ity, A and u are the Lame’s constants. With the source signature,
equation 1 can be written as
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where src(#) is the seismic source. Below, we only consider solving
methods for simulation of the wavefields with constant density.

Staggered-grid finite-difference operators

Using the same FD coefficients for the x-, y-, and z-directions and
taking the downward direction of z as positive, we have the differ-
ence scheme as follows:

3
pNth 1 @ (P, 1/2.0.0 pgm+l/2.0,0)’
)

pNhZ
o
pNhZ

0
m(po.m—l/z,o pO.—m+l/2,0)’ 3)

0 0
m(p0,0,m—l/Z - p0,0,—m+l/2)’

where p;, ;= p(x+mh,y+1lh,z+ jh,t + nt); h is the spatial
grid interval; ¢ is the time; 7 is the time step; m, [, j, and n are
the numbers of nodes on each direction; M is the number of FD
coefficients; and a, (m=1,2,...,M) are the staggered-grid
FD coefficients.

The second-order approximation for the time derivative is given

by
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where At is the time-sampling step in the time direction.
Substituting approximations 3 and 4 into equation 1 results in
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where 7 = At denotes the time-sampling step.
Using the plane-wave theory, we obtain from equation 5 that (Liu
and Sen, 2011)
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where k. =k cos 0 cos ¢, k, =k cos 0sin¢p, k,=ksin6,

k= /k2+ kyz, + k2, r=vt/h,  is the angular frequency, @ is

the angle of wave propagation measured from the horizontal plane
perpendicular to the z-axis, and ¢ is the azimuth of the plane wave.
The time-space domain for the staggered-grid FD scheme can be
obtained by substituting @ = kv into equation 6 and taking the
Taylor expansion in kh and assuming a constant angle of wave
propagation 6 = 0 and ¢ = /8 (Liu and Sen, 2011).

Optimizing regularized staggered-grid finite-difference
operators

Assuming that equation 6 is valid for all angles of wave propa-
gation, we obtain
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where k,, k,, and k, are as mentioned above.
Let a be the vector form of the FD coefficients, and denote the left
side of equation 7 by
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and the right side of equation 7 by
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Our aim is to minimize the error between the temporal dispersion
and the spatial dispersion for a fixed range of wavenumbers; i.e.,

®a) =) {F(a) - d} = min, (10)

where k is equally distributed between 0 and K, and K is determined
by the wave Velocity, seismic source, and spatial grid interval; i.e.,
K/Kiom = - /(2h> with f being the source frequency and v is the
wave velocity.

‘We observe that direct minimization of the objective function @
for the FD coefficient @ may lead to unstable results. This may hap-
pen for an FD operator with long stencils (Liang et al., 2013a;
Liang, 2013b; Zhang et al., 2011). Therefore, we resort to regular-
izing technique to restore stability. The regularization model is es-
tablished as

J(a) = ®(a)

)

where a > 0 is a user-defined regularization parameter and D is a
scale operator. In this paper, we choose D as an identity operator.
Our new task is solving the minimization problem,

J*(a) — min, (12)
instead of equation 10.

Regularizing computation of the coefficients

Using the Taylor expansion, we obtain
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where a* is the initial value, Aa = a —a’ and
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Taking the partial derivative of equation 11 with respect to the
increment Aa,, and noting that a,, = Aa,, + a™, and using the fact
that the partial derivative should be zero when J* is minimized, we
have
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where a@ > 0 is as mentioned in equation 11,
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Inserting equations 14, 16, and 17 into equation 15, we obtain the
linear algebraic equations for retrieving the FD coefficients in the
following form:

Ax = b, (18)

where A, € RM*M  x € R¥X! denotes the FD coefficients, and
b € RMX1which are in the following forms, respectively:
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in which C, . refers to the /th row of the matrix C and c, refers to the
Ith component of the vector ¢, [ = 1,2, ..., m. The initial value of
a* can be random numbers. The Von Neumann stability condition
for explicit FD schemes is » < 1/y/k(3>"¥_, |a,,|)~" (Liu and Sen,
2011), where r is defined as before and « is the spatial dimension of
the medium.

Note that C is symmetric, but C may be ill-conditioned for some
FD operators. If we do not consider regularization, direct solution of
Ca = ¢ will be unstable. To overcome the ill-conditioned property,
we apply the regularization technique as mentioned above. Cer-
tainly, we could also apply other regularization techniques to sup-
press oscillations of solutions (Wang et al., 2011). Thus, instead of
minimization problem 12, an a priori constrained optimization
problem could be applied as follows:

1
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and
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where Q[ is a function supplying some a priori information to the
solution and # is a constant.

Currently, to solve for x, the regularized solution can be obtained
by solving
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Agx =b. 22)
It is clear that when a = 0, the regularized solution reduces to the
least-squares solution. In the following, we refer to the regulariza-
tion method as the new method.

NUMERICAL DISPERSION-ERROR ANALYSIS
1D dispersion analysis

The dispersion ¢ is used to measure the dispersion effect of the
1D acoustic-wave equations, which is defined as follows (Liu and
Sen, 2011):

where vgp denotes the numerical phase velocity, v is the true veloc-
ity, k is the wavenumber, and % is the spatial grid interval. The
dispersion is measured by the distance of 6 to 1. Clearly, when
& = 1, dispersion disappear. And in equation 23, kh € [0, z]. Fig-
ures 1 and 2 compare dispersion errors of the traditional FD oper-
ator (here, we mean the FD operator obtained using the Taylor
expansion method in the spatial domain) and Liu and Sen’s method
with our new method as M is chosen as 4, 6, and 8, respectively. In
Figure 1a and 1b, we choose v = 1500 m/s, =1 ms, and h =
10 m; whereas in Figure 2a and 2b, we choose v = 4500 m/s,
7 =1 ms, and & = 10 m. Comparison of the results indicates that
as r increases, the traditional methods will be unstable; whereas for
Liu and Sen’s method and our new method, the results are stable.
Furthermore, our new method could preserve the dispersion relation
within a larger interval of frequencies. As we mentioned before,
when a = 0, our new method reduces to the least-squares method.
In Figure 3, we present the comparison of our new method with the
least-squares method. It is evident that the new method yields more
stable results than the least-squares method, the reason is that the
new method possesses the regularizing property when dealing with
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Figure 1. (a) Comparison of dispersion errors of the traditional FD operator with the new method for a 1D wave equation; v = 1500 m/s,
7=1ms, and &7 = 10m. (b) Comparison of dispersion errors of Liu and Sen’s method with the new method for a 1D wave equation;

v=1500 m/s, z=1ms, and 7 = 10 m.
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ill-posedness, because we tested that the condition number of the
matrix C is about 0(10'%)-0(10'7) for different values of M.

2D dispersion analysis

The 2D dispersion §(6) is used to measure the dispersion effect,
which is defined by Liu and Sen (2011) as

_ 2
= sin <r\/c_1), 24)

where ¢ is defined by
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The smaller the absolute value of §(6), the less dispersion of the FD
operator will be.

A comparison of the dispersion errors of the FD operator using
traditional FD scheme, Liu and Sen’s FD scheme, and our new FD
scheme for the 2D FD operator is shown in Figures 4 and 5, for v =
1500 m/s and v = 4500 m/s, and the same M, h, and 7, respec-
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Figure 2. (a) Comparison of dispersion errors of the traditional FD operator with the new method for a 1D wave equation; v = 4500 m/s,
7=1ms, and & = 10 m. (b) Comparison of dispersion errors of Liu and Sen’s method with the new method for a 1D wave equation;

v=4500 m/s, 7=1ms and 4 = 10 m.
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Figure 3. (a) Comparison of dispersion errors of the least-squares method with the new method for a 1D wave equation; » = 1500 m/s,
7=1ms, and 7 = 10 m. (b) Comparison of the least-squares method with the new method for a 1D wave equation; v = 3000 m/s,

t=1ms,and » = 10 m.
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tively. It indicates from Figures 4 and 5 that Liu and Sen’s FD method
and our new FD method perform better than the traditional FD
method. In addition, with increasing of the length of the FD operator,
the dispersion relationship preserving frequency range of Liu and
Sen’s FD method increases slowly, whereas the new method can pre-
serve the dispersion relation in a larger frequency range.

We remark that when a = 0, our method reduces to the well-
known least-squares method. For short length of the FD operator,
our method performs the same as the least-squares method. How-
ever, when the length of the FD operator is large, our method will be
much more stable than the least-squares method to define the stencil
coefficients. The same reason is that the new method possesses the
regularizing property when dealing with ill-conditioned linear sys-
tem and hence provides a stable solution.
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3D dispersion analysis

The 3D dispersion (6, ¢) is used to measure the dispersion ef-
fect, which is defined by Liu and Sen (2011) as

v 2 .
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The smaller the absolute value of §(6, ¢), the less dispersion of the
FD operator will be.
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Figure 4. (a) Comparison of dispersion errors of the traditional FD operator with the new dispersion-relationship-preserving FD operator for
the 2D wave equation; M = 10, h = 20 m, 7 = 1 ms, and v = 1500 m/s. (b) Comparison of dispersion errors of Liu and Sen’s method with
the new dispersion-relationship-preserving FD operator for the 2D wave equation; M = 10, h =20 m, 7 = 1 ms, and v = 1500 m/s.

a) b)
1.02F T T T T T ™ 1.02F T T T T T ™
1 1
0.98 0.98
0.96 |- 0.96 +
T 094} T 094}
“w “w
0.92 0.92+
09} Tra 6 = /0 09+ Liu&Sen6=0
== =Tra6=n/8 = = =Liu&Sen6=n/8
““““ Tra 0= n/4 oo Liu & Sen 6= 14
0.88 1 New 6=0 1 0.88 |- New 0= 0
= = = New 6 =7/§ = = =New0=n/8
0.86l ' New 60 = /4| ] 0.86L " New 6 = n/4 ]
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 2.5 3
kh kh

Figure 5. (a) Comparison of dispersion errors of the traditional FD operator with the new dispersion-relationship-preserving FD operator for
the 2D wave equation; M = 10, h = 20 m, 7 = 1 ms, and v = 4500 m/s. (b) Comparison of dispersion errors of Liu and Sen’s method with
the new dispersion-relationship-preserving FD operator for the 2D wave equation; M = 10, h =20 m, 7 = 1 ms, and v = 4500 m/s.
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Comparison of the dispersion errors of the FD operator using tra-
ditional FD scheme and our new FD scheme for the 3D FD operator
is shown in Figure 6a and 6b. It indicates from Figure 6 that our new
FD method performs better than the traditional FD method and can
preserve the dispersion relation in a larger frequency range.

We remark that during our simulations, when the length of the FD
operator is long, the least-squares method cannot yield a reasonable
solution; instead, using our regularizing least-squares method, the
solution is always satisfactory. The reason lies in that the matrix C is
extremely ill-conditioned; for example, when M = 20, the condi-
tioning number can reach O(10'7), which is a huge number and
may lead to unstable solutions for least-squares method.

NUMERICAL SIMULATIONS

Because the new method (i.e., the regularizing least-squares
method) preserves the numerical dispersion relationship better than
the least-squares method, in the following simulations, we only list
the comparison results using the traditional method, Liu and Sen’s
method, and our new method.

A homogeneous model

First, we consider a simple model with velocity 1500 m/s, spatial
sampling interval of 20 m, and M = 6 for all FD operators. The
seismic source is located in the center of the test area and the source
function used is as follows:

w(t) = 108 exp(=f3(t - 1)), @7)
where the frequency f is 39 Hz and 1, is chosen as 4/ f,. The sec-
ond derivative of the source function is applied in simulating the
wavefield. The spectrum of the seismic source is shown in Figure 7
and the dominant frequency is 13 Hz.

Figure 8a and 8b plots slices of the snapshots of the wavefield. It
shows details of differences of the traditional method, the pseudo-
spectrum method, and the new FD method at 1530 ms. Figure 8a is
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a plot of slices of snapshots when the time step equals 1.5 ms. Com-
parison of the results from Figure 8a reveals that the pseudospec-
trum and the new dispersion-relationship-preserving methods can
reduce the dispersion and hence provides more accurate wavefield
simulation. Figure 8b illustrates slices of snapshots when the time
step equals 4.5 ms. Meanwhile, we regard the analytic solution is
from the pseudospectrum method with small time step (1.5 ms). It is
observed that our new time-space-domain method is effective to re-
duce temporal dispersion when the time step becomes large.

Salt model

In the following, we present simulation results using a widely
referred salt velocity model from SEG. The velocity model is shown
in Figure 9 with variations of velocities from 1486 to 4790 m/s.
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Figure 7. Source frequency.
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Figure 6. (a) Dispersion errors of the traditional FD operator for the 3D wave equation; M = 10, h = 10 m, 7 = 1 ms, and v = 2500 m/s.
(b) Dispersion errors of the new dispersion-relationship-preserving FD operator for the 3D wave equation; M = 10, & = 10 m, 7 = 1 ms, and

v = 2500 m/s.
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Figure 8. (a) Slices of snapshots of the wavefield with the traditional method, pseudospectrum method, and the new method when
At = 1.5 ms. (b) Slices of snapshots of the wavefield with the traditional method, pseudospectrum method, and the new method when

At =4.5 ms.

Figure 9. Salt velocity model with an embedded source (red dia-
mond).

The spatial sampling interval equals 20 m, the temporal step is 1 ms,
and M = 7 for all FD operators. With the same source function as in
former examples and f, = 45 Hz, the simulation results using the
traditional FD method, Liu and Sen’s method, and the new method
can be obtained. To show details of their difference, we also plot
slices of the snapshots of the wavefield at 2500 ms (z = 620 m)
in Figure 10a—10c. It is evident that the new method provides
the best simulation results with least dispersion.

CONCLUSION

Based on analysis of the determination of the FD coefficients
in temporal-spatial domain using staggered-grid schemes, we pro-
posed a new method for determining the FD coeftficients that has the
following features: (1) the method specifies the wavenumber (fre-
quency) upper limit according to the source frequency, the spatial
grid interval, and the velocity, whereas previous methods use the
same upper limit of the frequency for different velocities; (2) the
method considers different angles of the wave propagation, whereas
the previous methods use a fixed angle; and (3) a regularization
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Figure 10. (a) Slice of the snapshot of the salt model with the traditional method, (b) slice of the snapshot of the salt model with Liu and Sen’s
method, and (c) slice of the snapshot of the salt model with the new dispersion-relationship-preserving method.
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model by perturbation is proposed to ensure FD coefficients being
solved via a well-posed linear system.

With the dispersion analysis of our new method and comparison
with previous FD coefficients determination methods using stag-
gered-grid schemes, we conclude that our method is feasible for
seismic wave modeling. As a result, our method can be a substitute
for the traditional staggered-grid FD coefficients determination
methods, whereas these methods are essential in forward seismic
wave modeling and reverse-time migration.
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