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Abstract

Quantitative remote sensing is an appropriate way to estimate atmospheric parameters and structural
parameters and spectral component signatures of Earth surface cover type. Since the real physical system
that couples the atmosphere, water and the land surface is complicated, its description requires a
comprehensive set of parameters, so any practical physical model can only be approximated by a limited
mathematical model. The pivotal problem for quantitative remote sensing is inversion. Inverse problems
are typically ill-posed; they are characterized by: (C,) the solution may not exist; (C3) the dimension of the
solution space may be infinite; (Cs3) the solution is not continuous with variations of the cbservations. These
issues exist for nearly all inverse problems in geosciences and quantitative remote sensing. For example,
when the observation system is band-limited or sampling is poor, i.e. few observations are available or direc-
tions are poorly located, the inversion process would be underdetermined, which leads to a multiplicity of
the solutions, the large condition number of the normalized system, and significant noise propagation.
Hence (C;) and (C;) would be the difficulties for quantitative remote sensing inversion. This paper will
address the theory and methods from the viewpoint that the quantitative remote sensing inverse problems
can be represented by kernel-based operator equations and solved by coupling regularization and optimi-
zation methods. In particular, | propose sparse and non-smooth regularization and optimization techniques
for solving inverse problems in remote sensing. Numerical experiments are also made to demonstrate the
applicability of our algorithms.
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| Introduction modelling, model-based inversion is still in the
exploration stage (Wang et al., 2009¢) because
intrinsic difficulties exist in the application of a
priori information, inverse strategy and inverse
algorithms. The development of hyperspectral
and multiangular remote sensors has enhanced
exploration and provided us more spectral and

Model-based inversion is guite important for
quantitative remote sensing. Here, model-based
inversion mainly refers to using physical or
empirically physical models to infer unknown
but relevant parameters. Hundreds of models
related to atmosphere, vegetation and radiation
have been established during recent decades
(Liang, 2004), and model-based inversion in
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spatial information than before. However, to uti-
lize the information to solve problems faced in
gquantitative remote sensing is still a challenge.
Remote sensing inversion for problems in differ-
ent areas is being paid more attention. In a series
ofinternational study projections, such as Intema-
tional Geosphere-Biosphere Programme (IGBP),
World Climate Research Programme (WCRP)
and NASA’s Earth Observing System (EOS),
remote sensing inversion has become a focal point
of study.

Model-based remote sensing inversion usu-
ally requires solving optimization problems with
different constraints. Therefore, knowledge of
how to incorporate the methods developed in
operational research field into the remote sen-
sing inversion field is needed. In quantitative
remote sensing, since the real physical system
that couples the atmosphere and the land surface
is very complicated, sometimes it requires a com-
prehensive set of parameters to describe such a
system, so any practical physical model can only
be approximated by a model which includes only
a limited number of the most important para-
meters that capture the major variation of the real
system. Generally speaking, a discrete forward
model to describe such a system is in the form:

y = hiz,5) (1.1)

where y is single measurement, = is a vector of
controllable measurement conditions such as
wave band, viewing direction, time, Sun posi-
tion, polarization, and so forth, § is a vector of
state parameters of the system approximation,
and h is a function which relates = with 8, which
1s generally non-linear and continuous.

With the ability of receiver sensors to acquire
multiple bands, multiple viewing directions and
s0 on, while keeping § essentially the same, we
obtain the following inhomogeneous equation:

y=h(z,8)+n (1:2)

where y is a vector in BY, which is an M
dimensional measurement space with M values

corresponding to M different measurement con-
ditions, n € BMis the vector of random noise
with same vector length M. Assume that there
are m undetermined parameters that need to be
recovered. Clearly, if M = m and the system is
linearly independent, (1.2) is a determined
system, so it is not difficult to develop some
suitable algorithms to solve it. If more observa-
tions can be collected than the existing para-
meters in the model (Verstraecte et al., 1996),
i.e. M>m, the system (1.2) is overdetermined.
In this situation, the traditional solution does not
exist. We must define its solution in some other
meanings, for example, the least squares error
(LSE) solution. However, for physical models
with complete parameters for a single band, it
is questionable whether remote sensing inver-
sion can be overdetermined in the foreseeable
future (Li et al., 1998). Therefore, inversion
problems in geosciences seem to be always ill-
posed (underdetermined) in some sense. More-
over, faced with an underdetermined system,
the solution will be non-unique. In other words,
there will be infinite solutions in the null space
of solutions. To tackle the ill-posedness, proper
a prion information must be found and involved
into the inversion procedure to provide a useful
approximate solution (Li et al., 2001).
Developed methods in literature for quan-
fitative remote sensing inversion are mainly
statistical methods with several wvanations
from Bayesian inference (Combal et al., 2003;
Pokrovsky and Roujean, 2002, 2003; Pokrovsky
et al, 2003; Quaife and Lewis, 2010) and regu-
larization methods (Phillips, 1962; Twomey,
1975; Wang et al., 2007a, 2008). According to
Combal et al. (2003). there are three classes of
algorithms for solving the inverse problems in
remote sensing, including minimization algo-
rithms, lookup tables (LUT) and neural networks
(NNT). Many efforts havebeen madeto invert the
radiative transfer models using these algonthms
(Goel and Strebel, 1983; Jacquemoud and Baret,
1993; Kuusk, 1991: Weiss et al., 2000) and to
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validate these algorithms (Combal et al., 2003;
Knyazikhin et al., 1998a, 1998b; Privette et al.,
1996; Weiss and Baret, 1999). We pay attention
to the minimization algorithms in this paper.
Minimization algonithms based on filtering tech-
nigues have been extensively studied (Cohnetal.,
1994; Samain et al., 2008; Sarkka et al., 2004 ).
We will show in this paper that the Tikhonov reg-
ularization can be also expressed as filtening
methods. Using kemel expression, we analyse
solution theory and methods for guantitative
remote sensing inverse problems from an alge-
braic point of view. We first review regulariza-
tion methods for retrieval of parameters, and
then propose sparse/non-smooth inversion by
total variation and sparse inversion in [, — [,
(p=2,9=1) spaces and introduce advanced
optimization techniques. These methods, as
far as we know, are novel to literature in the
earth sciences.

The outline of the paper is as follows: in sec-
tion 111, we formulate the inverse problems by
operator equations of the first kind and define
the ill-posed nature of the problems. Sections
11.2 and 11.3 ntroduce two typical inverse prob-
lems in remote sensing; one is the linear kemel-
based bidirectional reflectance distribution
function (BRDF) model inversion, and another
15 the atmospheric aerosol particle size distnbu-
tion function retrieval problem. Both problems
are of great importance for calibration and for
parameters retrieval. The ill-posed nature of
both problems is explained in the respective
sections. In section 11, a simple linear algebraic
system is introduced to explain the ill-posedness
of the finite linear inverse problems. In section
1V, the regularization theory and solution tech-
niques for ill-posed quantitative remote sensing
inverse problems are described. Beginning from
the Bayesian inference, section I'V.l discusses
constrained optimization; section IV.2 fully
extends the Tikhonov regulanzation; section
IV.3 discusses the conceptual regularization

scheme formulated in the Bayesian statistical
inference; in section [IV.4, the direct

regularization method based on spectrum
decomposition for equality-constrained problem
is introduced, and equivalence to the standard
Tikhonov regularization 1s established by intro-
ducing filtering functions. In section V, the
sparse regulanization and optimization theory
and solving methods are discussed for finding
an optimized solution of a minimization model.
Section V.| develops a total vanation method
for the ill-posed inverse problem; section V.2
discusses sparse and non-smooth inversion in
ln — 1, space; section V.3 discusses some com-
putational issues in inversion. In section VI, the
applications of regularization and optimization
solution methods for retrieval of land surface
parameters and aerosol particle size distribution
functions are presented. Finally, in section VII,
some concluding remarks are given.

Il Linear kernel-based models and
ill-posedness

I General model of the first kind operator
equation

Inverse problems are usually formulated as
operator equations of the first kind. We con-

sider the first kind operator equation in the
general form:

Alx) =y (2.1)

which is an appropriate expression for an obser-
ving system, with 4 the response function (lin-
ear or non-linear) from Hilbert space X to
Hilbert space ¥, x the unknown input and
v the observed data. Particularly, if 4 is a linear
mapping, we will denote the response system
as:

Ax =y (2.2)

which is clearly a special case of (2.1). We will
also use 4 as an operator in infinite spaces some-
times, and a matrix sometimes. We assume that
readers can readily recognize them.
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The problem (2.1) 1s said to be propery
posed or well-posed in the sense that it has the
following three properties:

(C1) There exists a solution of the problem,
i.e. existence;

(C2) There is at most one solution of the
problem, i.e. unigueness;

(C3) The solution depends continuously on
the vanations of the right-hand side (data),
i.e. stability,

The condition (C,) can be easily fulfilled if we
enlarge the solution space of the problem
(2.1). The condition (C») is seldom satisfied for
many indirect measurement problems. More
than one solution may be found for the problem
(2.1) and information about the model 15 miss-
ing. In this case, a prniori knowledge about
the solution must be incorporated in the model.
Stability is the most important requirement. If
the problem (2. 1) lacks the property of stability,
then the computed solution will be far from the
true solution since the practically obtained solu-
tion is contaminated by unavoidable ermors.
Therefore, there is no way to overcome this dif-
ficulty unless additional information about the
solution is available. Again, a priori knowledge
about the solution should be involved.

If equation (2.2) is well-posed, then 4 has a
well-defined, continuous inverse operator 4.
In particular, 4-'(4(x)) =x for any x € X" and
Range{4) = Y. In this case both the algebraic
nature of the spaces and the topologies of the
spaces are ready to be employed.

2 Linear kernel-based BRDF model

As an example of linear kernel-based models in
geosciences, we consider a well-refereed model.
It is based on the assumption that the anisotropy
of the land surface can be described by the
bidirectional reflectance distribution function
(BRDF). With the progress of the multiangular
remote sensing, it seems that the BRDF models

can be inverted to estimate structural parameters
and spectral component signatures of Earth sur-
face cover type (Roujean et al., 1992; Strahler
et al.. 1994). The state-of-the-art of BRDF is the
use of the linear kernel-based models, mathe-
matically described as the linear combination
of the isotropic kernel, volume scattering ker-
nel and geometric optics kernel. Information
extraction on the terrestrial biosphere and
other problems for retrieval of land surface
albedos from satellite remote sensing have
been considered by many authors in recent
years; see, for instance, the survey papers on
the kernel-based bidirectional reflectance dis-
tribution function (BRDF) models (Combal
et al., 2003; Pokrovsky and Roujean, 2002,
2003; Pokrovsky et al., 2003; Quaife and
Lewis, 2010) and references therein. Computa-
tional stability is characterized by the algebraic
operator spectrum of the kernel-matnx and the
observation errors. Therefore, the retrieval of
the model coeflicients is of great importance
for computation of the land surface albedos.
The linear kemel-based BRDF model can be
described as follows (Roujean et al., 1992):

_.ﬁm + k‘l.'-!.u'{rj'ﬂ. EI'I.'ﬂ. '!.‘-'f'lf:-.ed + kg-&'ﬂ{n'ﬂ. ﬁ-. d}lfgﬂh =" .i'"{ i‘j._ EI'l.'ﬂ d}}
(2.3)

where » is the bidirectional reflectance; the
kernels k,, and k., are so-called kernels, i.e.
known functions of illumination and of viewing
geometry which describe volume and geometric
scattering, respectively; ¢ and ¢, are the zenith
angle of the solar direction and the zenith
angle of the view direction, respectively; ¢
is the relative azimuth of sun and view direc-
tion; and f,. f,.; and f,., are three unknown para-
meters to be adjusted to fit observations.
Physically, fis, fia and f, are closely related
to the biomass such as leaf area index (LAI),
Lambertian reflectance, sunlit crown reflec-
tance, and viewing and solar angles. The wvital
task then is to retrieve approprate values of the
three parameters.




Wang

Generally speaking, the BRDF model
includes kernels of many types. However, it
was demonstrated that the combination of
RossThick (k) and LiSparse (k,..) kemels
had the best overall ability to fit BRDF
measurements and to extrapolate BRDF and
albedo (e.g. Li et al., 1999; Privette et al.,
1997; Wanner et al., 1995). A suitable expres-
sion for the RossThick kemel &, was derived
by Roujean et al. (1992). It is reported that
the LiTransit kernel Apuma, Instead of the
kernel k,,, is more robust and stable than LiS-
parse non-reciprocal kernel and the reciprocal
LiSparse kernel kg, (LiSparseR) where the
LiTransit kemel and the LiSparse kemel are
related by:

Fwarse; B > 2,

and B is given by 8:=B(tit,0)=-0
(ti,t,, &) + sect/ +sect, in Li et al. (2000). More
detailed explanation about @ and ¢ in the defi-
nition of &g, can be found in Wanner et al.
(19953).

To use the combined linear kernel model, a
key issue is to numencally solve the inverse
model in a stable way. However, it is difficult
to do in practical applications due to the ill-
posed nature of the inverse problem.

k‘c .I'"F-E'T'B {“ 2'.-
‘&Trmn::'r = { i

a ll-posedness. Note that (2.3) is a linear
model in finite spaces, therefore it is easy to
rewrite it into a finite rank operator equation:

Kx=y (2.4)

by setting x = [fizn.fiol.frea] and y = [y;] with the
entries y; = ri(1;, 1., &), where y is the measure-
ment data. The inverse problem is to recover the
model parameters x given the limited measure-
ment data y.

Numerically, the discrete ill-posedness lies in
that the operator K may be inaccurate (can only
be approximated), and the model i1s usually
underdetermined if there are few observations
or poor directional range, or the observations

are highly linearly dependent and noisy. For
example, a single angular observation may
lead to an underdetermined system whose
solutions are infinite (the null space of the
kemel operator contains non-zero vectors)
or the system has no solution (the rank of the
coefficient matrix is not equal to the augmen-
ted matrix). In practice, random uncertainty
in the reflectances sampled translates into
uncertainty in the BRDF and albedo. We note
that noise inflation depends on the sampling
geometry alone. For example, for MODIS
and MISR sampling they vary with latitude
and time of year; but for kernel-based models
they do not depend on wavelength or the type
of BRDF viewed. Therefore, the random
noise in the observation (BRDF) and the
small singular values of K control the error
propagation.

So far, statistical methods and algebraic
methods have been developed for solving this
inverse problem (e.g. Combal et al., 2003;
Pokrovsky and Roujean, 2002, 2003; Quaife
and Lewis, 2010; Wang et al., 2007b, 2008).
We will describe these methods and introduce
recent advances in following sections.

3 Aerosol particle size distribution function
inversion

It is well known that the characteristics of the
aerosol particle size, which can be represented
as a size distribution function in the mathemati-
cal formulation, say n(r), play an important role
in climate modelling due to their uncertainty
(Houghton et al., 1996). So, the determination
of particle size distribution function becomes a
basic task in aerosol research (Bockmann,
2001; Bockmann and Kirsche, 2006; Bohren
and Huffman, 1983; Davies, 1974; McCariney,
1976; Twomey, 1977). The particle size distri-
bution is usually retrieved by extinction mea-
surements using a sun-photometer. The
attenuation of aerosols can be written as the
integral equation of the first kind:
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T(A) = [1 0 Qo (ra A () dr + (1)
0

(2.5)

where r is the particle radius; n{r) is the colum-
nar aerosol size distribution (i.e. the number of
particles per unit area per unit radius interval
in a vertical column through the atmosphere);
n is the complex refractive index of the aerosol
particles; 2 is the wavelength; t(4) is the aerosol
optical thickness (AOT); £(i) is the error/noise;
and 0,.(r, , 1) is the extinction efficiency fac-
tor from Mie theory. The AOT can be obtained
from the measurements of the solar flux density
with sun-photometers; therefore, one can
retrieve the size distribution by the inversion
of AOT measurements through the above equa-
tion. Equation (2.5) can be simply expressed by
the operator equation:

t(A) = (Kn)(L) +2(}) (2.6)

where the operator K is specified by the kernel
function &(r,x,n) = r Quxl(r. &, 1)

a llFposedness. The particle size distribution
model (2.6) is a linear model in infinite spaces.
It is clear to see that the kernel function k(r, 2, 1)
is continuous, differentiable and bounded on
|0, b]; therefore the operator K is compact.
According to the definition of the ill-
posedness and the operator theory (Tikhonov
and Arsenin, 1977; Xiao et al., 2003; Yosida,
1999), the ill-posedness of the aerosol problem
is self-evident because at least one of the three
items for well-posed problems is violated.

I1l A simple ill-posed mathematical
example

Let us consider a simple linear algebraic system:
Az =u (3.1)

AeR™ e R, uc R A =[::]*;=

[:] = “ ] . Itis clear to see that 4 is positive

where

semi-definite, and the equation has an infinite
number of solutions. However, the normal solu-
tion (x*, ") canbe found, i.e. (x*,»*) = (0.5,0.5).
If we perturb the matrix a little, i.e. 4 = 4 + hE,
where E is a diagonal matnx in the form of

l{;g], h 1s a typically small number and h # 0,

in this case there is a unique solution of (3.1),
i.e.(x,y) = (0, 1).

Let us look at another example: consider the
same linear system (3.1), where A4 € B*

: /2
: :]: = [:] Ju =[;“},E] It
is clear that the equation has no solution at all.
However, the normal solution (x*, v*) can again
be found, i.e.(x*, y*) = (0.5, 0.5).

The simple example indicates that if the near-
est two observations are linearly dependent, the
number of solutions may be infinite, non-unique
or non-existent, 1.e. the ill-posedness is fulfilled.
In such case, we can only obtain the solution
with minimum energy. Totackle the difficulties,
we have to resort to regulanzation.

zeR ne B 4=

IV Regularization methods

For ease of notation, from this section to the end
of the paper, we use Kx =y to represent the lin-
ear system, where X refers to the operator either
from kernel-based BRDF maodel (2.3) or from
the aerosol particle attenuation equation (2.5).

Bayesian inference provides a conceptually
simple process for updating uncertainty in the
light of evidence. Initial beliefs about some
unknown quantity are represented by a priori
distribution. According to Bayesian rule, the
estimated parameter could be expressed as a
posteriori probability p(x|v):

plxly) = plyx)plx)

py)
where p(x) is the a priori probability distribution
about the parameter x, p(v) is the a priori prob-
ability distribution about the data, and p(y|x)
describes the probability distribution function

(4.1)
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about the discrepancy between the model and
the data. Using loganthm, we obtain the follow-
ing equation:

logp(xly) = logp(ylx) + logp(x) —logp(y)
(4.2)

Therefore, the maximum a posteriori probabil-
ity can be obtained by minimizing the following
function:

J(x) := —logp(x|y) = — logp(y|x) — log p(x)
(4.3)

Information in the data is expressed by the like-
lihood function L{x|y)=logp(x|v). Therefore,
minimization of the function J{x) is equivalent
to maximization of the likelihood function
L{x|y). The a priori distribution p(x) and the like-
lihood function are then combined to obtain the
postenior distribution forthe quantity of interest.
The a posterioni distribution expresses our
revised uncertainty in light of the data, in other
words, an organized appraisal in the consider-
ation of previous expenience. For example, we
can choose p(y|x) as:

Ly — Kxlj
o~ T‘,”*) (4.4)
T |

where C, is a constant related to the number g,
a, is the variance related to data and ¢ = 0. In
the following context, we will see how the
Bayesian inference is related.

plyix) = Cyexp(—q

I Applying constraints to solutions

According to Bayesian inference theory, for
effective inversion of the ill-posed kemel-
driven model, we have to impose an a priori con-
straint to the interested parameters. This leads to
solving a constrained minimization problem:

minJ/(x).s.tKx =y A, <¢lx) < A, (4.5)

where ./(x)denotes an object function, whichis a
function of x, ¢(x) is the constraint to the solu-
tion x, and A; and A, are two constants which

specify the bounds of c(x). Usually, J(x) is
chosen as the norm of x with different scales.
If the parameter x comes from a smooth func-
tion, then .J{x) can be chosen as a smooth func-
tion, otherwise J(x) can be non-smooth.

The constraint ¢(x) can be smooth (e.g.
Sobolev stabilizer) or non-smooth (e.g. total
variation or [, norm (g # 2) based stabilizer).
A generncally used constraint is the smoothness.
It assumes that physical properties in a neigh-
bourhood of space or in an interval of time pres-
ent some coherence and generally do not change
abruptly. Practically, we canalways find regula-
rities of a physical phenomenon with respect to
certain properties over a short period of time
(Wang et al., 2007b, 2008). The smoothness has
been one of the most popular a prion assump-
tions in applications. The general framework
is the so-called regularization which will be
explained in the next section.

2 Regularization: incorporate a priori
information naturally

Most inverse problems in real environment are
generally ill-posed. Regularization methods are
widely used to solve such ill-posed problems.
The complete theory for regularization was
developed by Tikhonov and his colleagues
(Tikhonov and Arsenin, 1977; Tikhonov et al.,
1995). For the discrete model (2.4), we suppose
the right-hand side y is the measurement with
noise which represents the bidirectional reflec-
tance or the AOT. The Tikhonov regularization
method is to solve a regularized minimization
problem:

7 J 2 :
Jrin®*(x) = ||Kx — y|3+2||D" x||,— min
(4.6)
instead of solving:
se(x) := || Kx — y[|3— min (4.7)

In (4.6), = is the regularization parameter
and D is a positively (semi-)definite operator.
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By a variational process, the minimize of (4.6)
satisfies:

KTKx +abDx =Ky (4.8)

or can be written as x(z) = (K7K + D) 'K Ty, It
is clear to see that the Tikhonov regulanization is
a special case of Bayesian inference if we take
g =2 in equation (4.4) and choose the a priori
distribution p(x) as the 2-norm. The operator D
is a scale matrix which imposes smoothness
constraint to the solution x. The scale operator
D and the regularization parameter ¥ can be
considered as some kind of a prion information;
see Wang et al. (2008, 2009¢c) for details.

Choosing the regularization parameter » can
be performed in an a priori way or an a poster-
iori way. The a prion way means sefting fixed
values of parameter « in calculations, while the
a posteriori way means determining an optimal
regularization parameter. We recall a well-
known discrepancy principle discussed in Wang
et al. (2008) that the optimal value of the regu-
larization parameter should be the solution of
the non-linear equation:

¢(a) = (Kx(a) — y, Kx(2) —y) — & (4.9)

where x(z) indicates that the unknown para-
meter is related to the regularization parameter,
and o is the upper bound of error in the observa-
tion. Once an optimal value ", i.e. the root of
the above equation, is found, the optimal para-
meter x(x") is obtained. The root is easy to find
through Newton’s iterative method:

(k)

4.10
' (ok ) [ )

Ugpp1 = Ug —

or using the more efficient root-finding method:

NN 2ap( o)
Lyl = S - =
@' (o) + \/m’{ﬁfﬂ‘ 2ep (o )™ (ot )
(4.11)
Remark 4.1 It deserves attention that in

atmospheric science many other regularization

methods are developed (Bockmann, 2001;
Bockmann and Kirsche, 2006; Voutilainenand
and Kaipio, 2000). Meanwhile, there is a similar
method, called the Phillips-Twomey’s regular-
ization (Phillips, 1962; Twomey, 1975), which
is based on solving the problem (Wang et al.,
2006a);

min, Q(x

where O(x) = (Dx,x) with D a pre-assigned
scale matrix and A = 0. It is clear that Phillips-
Twomey’s regularization shares similarty with
Tikhonov's regulanzation and can be written in
consistent form. The form of the operator D is

determined by the norm of the second differ-
N—1

Z (xiey — 2% +

=2
matrix D is badly conditioned and will cause
numerical instability. We consider choosing a
proper D from Sobolev space, i.e. in (4.6) the
matrix D is determined from discretization of
|| x|[3+2» where the inner product of two functions
Z(r) and L(r) in W' space is defined by:

stk —y[|=A  (4.12)

ences v: ;). However, the

Jr

(E(1), L))z = [fa.l:n:m

+Z

According to the Sobolev imbedding theorem,
this form of regularization possesses good con-
vergence property and stability and can yield a
smooth solution (Tikhonov and Arsenin, 1977;
Xiao et al., 2003).

a’; dts - - - dt,,

3 Statistical regularization

The role of Bayesian statistics is very similar to
the role of regularization (Wang et al., 2007b).
Now we establish the relationship between the
Bayesian estimation and the regulanzation. A
continuous random vector x is said to have a
Gaussian distribution if its joint probability dis-
tribution function has the form:
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l
y (2m)" det(C.)

expl —%I:_r — 1) Tl.';'_l'.' Hx — L))
(4.13)

P G) =

where x,u € BRY:, C, is an N-by-N symmetric
positive definite matnx, and det(-) denotes
the matrix determinant. The mean is given
by E{(x)=p and the covariance matrix is
covix) = C;.

Suppose y = Kx + n is a Gaussian distribution
with mean Kx and covariance C,, where C,, is the
noise covariance of the observation noise and
model inaccuracy. Then by (4.13) we obtain:

|
plylx) =
V(@0 det(C,)
exp(—i(y — Kx)"C; ' (v — Kx))
(4.14)

From (4.13), the prior probability distribution is
given by:

|
\/ (27)Y det(C;)

By Bayesian statistical inference and the above

two equations, we obtain an a posterion log
likelihood function:

L(xly) = log(p(x[y)) = —i(v — Kx)"
Cly—Kx)-LTC 'x+¢

plx) = exp(—x' C, 'x)

(4.15)

where ¢ is constant with respect to x. The
maximum a posteriori estimation is obtained
by maximizing (4.15) with respect to x:

= (KR )Ry (4.16)
The easiest way of choosing C, and C. is by
setting C, = o, Iy, C, = a.ly, and then (4.16)
becomes:

x= (K"K +ely) 'Ky (4.17)

where = o /a7, which is the noise-to-signal
ratio. It is clear that the solution obtained by
maximum a posterion estimation has the same
form as the solution of the Tikhonov regulariza-
tion when the regularization parameter is set to
be a priori value.

Remark 4.2: Recently, Quaife and Lewis
(2010) considered constrained least sguares
solutions. They imposed an expectation of the
temporal behavior of the parameter in the form:

=T e e L R (e e v L TS
(4.18)

where B specifies the required constraint, I is
a weighting matrix with I =17"T, C is the
observation covariance matrix and g satisfies
g = Bx". In a special case, e.g. choosing " as
an identity matrix /, g to be zero, the above
expression leads to:

2 =(K'TC'K +B"B)”'K'TC 'y (4.19)
If choose I' = v - I, we have:
*=&TC'K +¥B'B)'KTCYy  (420)

which is equivalent to (4.8) if we set o =77,
D = B"B and C = I. However. in this formation,
the Lagrangian parameter v has to be considered
in an a priori way. In Quaife and Lewis (2010),
the authors considered setting v in the amplitude
of 107" — 107, And it is clear that it requires
many numerical simulations to give statistical
information of a quasi-optimal value of the
Lagrangian parameter .

Remark 4.3: Combal etal. (2003 ) developed a
quasi-Newton algorithm for searching for the
maximum likelihood estimation of the probabil-
ity density function p of the canopy biophysical
variables through the model:

px occexp((y — y_.,im”.le_" ; (¥ — Veim)

(4.21"
+ (x—xpiee) G (0 —xpiar)) J

where yim is the simulated BRDF, xp.. is
the estimated a priori value to the retneval, C,
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is the covanance matrix of the x. variable val-
ues. In calculation, the authors preferred C, and
C diagonal matrices and C a sum of the root
mean square error of the radiometric measure-
ments and the canopy vanables a prion infor-
mation. It is reported that the quasi-Newton
algorithm can yield good convergence. Accord-
ing to our experience, the quasi-Newton
method relies on the initial guess value of x.
Improper choice of the guess value of x may
lead to divergence.

4 Direct regularization: spectrum
decomposition method

We now discuss a special Tikhonov regulanza-
tion method: direct regulanization. Instead of
standard Tikhonov regulanzation, the spectrum
decomposition method aims to solve an equality
constrained /» problem:

|x],— min,s.t. Kx =y (4.22)

As mentioned already, the ill-posedness is
largely due to the small singular values of the
linear operator. Let us denote the singular value
decomposition (SVD) of K as K =UZ}7
N
= % ouv; , where both U = [w;] and V = |v;] are
i=1
orthonormal matrices, i.e. the products of U'with
its transpose and Fwith its transpose are both
identity matrices; X is a diagonal matrix whose
non-zero entries consist of the singular values of
K. The traditional least-squares error (LSE)
solution x“F of the constrained optimization
system (4.22) can be expressed by the singular
values and singular vectors in the form

- I.~r :
E=% o' y)w. If the rank of K is
i=1

p < min{M N}, then the above solution form
inevitably encounters numercal difficulties,
since the denominator contains numerically
infinitesimal wvalues. Therefore, to solve the
problem by the SVD, we must impose a priori
information. We consider another way of incor-
porating a prion information to the solution.

The idea is quite simple; instead of filtering the
small singular values by replacing the small sin-
gular values with small positive numbers, we
just make a truncation of the summation, i.e. the
terms containing small singular values are
replaced by zeroes. Note that in practice K may
not be exactly rank deficient, but instead be
numerically rank deficient, ie. it has one or
more small but non-zero singular values such
that p < p. Here, p refers to the numerical rank
of a matrix (for details, see Wang et al.,
2006b, 2007b). In this way, we obtain a regular-
ized solution of the least squares problem:

i
LD _ z o uTy)v, (4.23)
=1
It is easy to see that the numerically truncated
singular value decomposition method is a spe-
cial case of the model (4.5) by choosing special
functions J(x) and c(x). If we define the filter
function of the standard Tikhonov regulariza-
tion (4.6) with D an identity as YI™(1) = L,
and the filter function of the singular value
Lif & >
0, else

then the regularized solution can be written as
vl : i
x2) =2 Y, (oo (i y)vi and NVP(a) =

decomposition  as T‘;““"“”{;}z{

=1
1-."4']”‘?-';"-’0
fore, the singular value decomposition method
corresponds to the standard Tikhonov regular-
ization with D an identity and a priori value of

the parameter =.

(a;)o; (u!y)vi, respectively. There-

V¥ Sparse and non-smooth
regularization with optimization

| Total variation regularization

We assume that the variations of the parameters
are sparse; this leads to the total variation inver-
sion. The total variation ofa continuous function
f defined on the interval [0,1] is given by:
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Tl
TV (f) = L E}“" (5.1)
or.
|
ded Jo !

where @ = {& is continuous : |{(7)] < 1,¢ € [0, 1],
$(0) = $(1) = 0}. This corresponds to a sparse
representation of vanations of the function f
in L, space. Note that the unknowns may be
sparse and non-smooth; therefore, we consider
choosing the stabilizer as TV(x). Considering
the non-smoothness of the stabilizer 7V (x) and
practical computer simulations, we obtain an
approximate regularization model as follows
(Wang, 2007);

T (x) = ||Kx —J-’H§+':I'_Jlr?_-h[r_l'j — min (3.3)

where M_(x) is the discrete form of

l
i) = | as/any? + 2a, (e > o)

M_(x) is an approximation to the total variation
of the surface parameter x, and x > 0 is the reg-
ulanzation parameter. Note that K and xin (5.3)
have been in the discrete form, hence in compu-
tation the remaining problem is the discretiza-
tion of M.(x). The discretization of M_.(x) can

be realized by setting Ak =g, then
the parameter x can be discretized
as [,y === j =12 ... N and L, for all i form

g
an N x (N + 1) matrix. For solving the above
minimization problem, we employ the Gauss-
Newton method (Yuan, 1993). For simplicity
of notation, we set \i(x) = 1||Kx — y||3. Denote
the gradient of W(x) as grad(x), M:(x) as
grad, (x) and the gradient of J*(x) as
grad,s (x), and denote the Hessian of i{x).
M_(x) and J*(x) as Hessy,, Hessy, and
Hess;: ., respectively, then the solution in each
iteration can be written as:

X1 = x; — Hess; | grad, (x;) (5.4)

where Hess | is the inverse of Hess,,, and
Jhk

grad s (x;) and Hess;= ., can be written as:

Emd,r;;, (x5) = grad (x; ) + grad,, (x;)
and:

Hessy: ., = Hessy,, + Hessy;,,

respectively.  Details about calculation
of grad,(x) and Hess, (x) are given in the Appen-
dix. Note that the denvative of the function
d(r) = /A +* is greater than zero for any
b = 0, Hesszz ,x; must be symmetnc and defi-
nite, hence there is a unique solution in the
above equation.

The assumptions about the variations of the
parameters are sparse are difficult to check
Therefore, this kind of regulanzation method
needs further examination before commercial
development.

2 Sparse inversion in |, — I, spaces
[1l-posedness is the intrinsic feature of the
inverse problems. Unless some additional
information/knowledge such as monotonicity,
smoothness, boundedness or the error bound
of the raw data are imposed, the difficulty may
be insuperable. A more general regularization
model i1s recently proposed in Wang et al
(2009a); where the authors considered a regular-
ization model in general form:

, 1 1
min J*(x) := = ||Kx — y|f} + 5| D2 (x - =) [
(5.5)

where p,g = 0 which are specified by users,
¥ = 0 is the regularization parameter, D is the
scale operator, and x” is an a priori solution of
the original model. It is clear to see that the reg-
ularization model (5.5) is also corresponding to
Bayesian inference if we take p-norm in equa-
tion {(4.4) and choose the a prioni distribution
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pl(x) as the g-norm. This formulation includes
most of the developed methods. Particularly,
forp=2 and g =1 or ¢ =0, the model repre-
sents non-smooth and sparse regulanzation,
which is relevant to the important topic of com-
pressive sensing for decoding in signal process-
ing. A regularizing active set method was
proposed both for quadmatic programming and
for non-convex problems; see Wang et al.
(2009a) for details. In the following, we con-
sider the case of p=2and g = 1.

Generally speaking, the kemel-driven BRDF
model is semi-empircal, and the retreved para-
meters x are mostly considered as a kind of
weight function though it is a function of biophy-
sical parameters. Therefore, x is not necessarily
positive. However, since it is a weight function,
an appropriate arrangement of the components
ofxcan vield the sameresults. That is to say, x can
be artificially fixed as non-negative. The remain-
ing problem is to develop some proper methods to
solve the ‘artificial’ problem, whereas for aerosol
particle size distribution function, the non-
negativity of x (corresponding to n(r)) is self-
evident. We recall that the /;-norm minimization
method, sometimes referred to as sparse-spiky
regularization, is an important issue in geophy-
sics community. This is because the /;-normm
could penalize outliers and large amplitude
anomalies. However, /,-norm has a singular
problem when the values of residual vanish.
Even if the values of residuals are not zero, the
numerical inversion process goes to failure at a
very small residual. To tackle this difficulty, our
new meaning to the solution x* is related to the
[y-norm problem:

min||x]|,,s.t. Kx =y,x > 0 (5.6)

which automatically imposes a priori infor-
mation by considering the solution in /; space.
Because of the limitations of the observation
system, one may readily see that the recovered
land surface parameters are discrete and sparse.
Therefore, if an inversion algorithm is not

robust, the outliers far from the true solution
may occur. In this situation, the a prion con-
strained /, minimization may work better
than the conventional regulanzation techniques.
The model (5.6) can be reduced to a linear pro-
gramming problem (Wang et al., 2005, 2009b;
Ye, 1997; Yuan, 2001), hence linear program-
ming methods can be used for solving (5.6).
The l-norm solution method is seeking a
feasible solution within the feasible set
S={x:Kx =y,x>0}. So it iz actally
searching for an interior point within the feasible
set §, hence is called the interior point method.
The dual standard form of (5.6) is in the form:

maxy g.st.s=e—K'g>0 (5.7)

where g is a new varable and e is a vector with
all components equalling 1. Therefore, the
optimality conditions for (x,g.s) to be a
primal-dual solution triplet are that:

Kx =}'.Krg+ g EE!*:,{ =0,x>0.s>0
(5.8)

wheres = diag(sy, 52, -, sn), F = diag(xy,x2, - -,
xy) and s;, x; are components of vectors s and x,
respectively. The notation diag(e) denotes the
diagonal matrix whose only non-zero compo-
nents are the main diagonal line.

The interior point method generates iterates
(x¢,25,8:) such that x, > 0 and s, > 0. As the
iteration index & approaches infinity, the
equality-constraint  violations |y — Kx;|| and
|IK'gy +s¢ —e|| and the duality gap x[s; are
driven to zero, yielding a limiting point that
solves the pnmal and dual linear problems.
Since the primal-dual interior point methods
uses the central path to find a solution of the
li-norm problem, therefore, the solution is just
picked one from the solution space, which
sometimes may not be the wanted solution for
specific problems (Wang et al., 2007a); in that
case, the /;-norm solution served as an a priori
estimate of the true solution. However, for the
parameter retrieval from kernel-driven BRDF
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model, the method always works. For the imple-
mentation procedures and examples about using
the algorithm, please refer to Wang et al.
(2007a, 2009b) for details.

For general values of p and g, algorithms are
ready to be made, this can be easily recognized
that the gradient and Hessian of J*(x) can be
evaluated as:

|ri P sign(r)

2|7 'sign(rs)
grad . [x] = pK”

 |ru sign(ra) |

| b —x0" Isignf-fl —xY)
| by —x0|" Is:ign[.l:z — 29
+ 74
I IL::;.; - _tﬂr’r Isign{.r.'-: —2°) i

Hess;a[x] = 3 p(p — 1)K diag
3

(I P2, 1

1q(g — Vdiag(|xi |77, [l T2, vl )

where ri(i=1,2,---, M) is defined by
ri = Knxi + Koxa+ -+ -+ Kivxy —y;  diag ()
again denotes the vector diagonalization;
sign(r) 18 the symbol function, defined by
lL.ifr>0
sign(r) =< 0,.ifr=20
—1,ifr<0

3 Discussion

Another problem for the sparse/non-smooth
regulanization of ill-posed parameter retrieval
problems is the proper choice of the regulanza-
tion parameters. Although a posterion choice
of the regularization is favourable, it needs to
know the noise levels of the data and solve a
smoothed non-linear equation (Wang, 2007;
Wang and Xiao, 2001). For the sparse/non-
smooth regularization, we set the values of the
regularization parameter x to be a priori. Many

optimization methods can be used for solving
the minimization problems (5.3), (5.5) and
(5.6) except for the Gauss-Newton method and
the linear programming method, e.g. the quasi-
Newton method and its variations, gradient des-
cent methods (Wang, 2007; Wang and Yuan,
2005). For the optimizing algorithms, a technical
problem is the stopping principle for the itera-
tions. Ideally, it requires as many iterative steps
as possible to get an optimal approximation.
However, there is a saturation state of errors for
inverse problems, i.e. there exists a fixed iterative
step, beyond which further iterations will bring
less useful information to the solution (Xiao
et al., 2003). Therefore, for different optimizing
algonithms, stopping rules must be properly stud-
ied; we expect that the stopping rules are related
with uncertainties in the observations.

V1 Experiments

I Retrieval of linear BRDF model

pﬂ'f’ ameters

We use the combination of RossThick kemel
and LiTransit kemel in the numencal tests. In
practice, the coefficient matrix K cannot be
determined accurately, and a perturbed version
K is obtained instead. Also, instead of the true

measurement y, the observed measurement

ve = v+ n is the addition of the true measure-

ment y and the noise n, which for simplicity is
assumed to be additive Gaussian random noise.
Therefore it suffices to solve the following oper-
ator equation with perturbation:

Kx =y, (6.1)

—

where KX =K + 6-AK for some perturbation
matrix AK and & denotes the noise level (upper
bound) of » in (0.1). In our numerical simula-
tion, we assume that AK i1s a Gaussian random
matrix, and also that |y, — y|| <6 < ||w||. The
above assumption about the noise can be inter-
preted as that the signal-to-noise ratio (SNR)
should be greater than 1. We make such an
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Table |. Darta sets used in the simulation

Data Cover type LAI
ranson soy.827 Soy 2.9
kimes.orchgrass Orchard grass I

parabola.| 994.asp-ifc2 Aspen 5.5

assumption as we believe that observations
(BRDF ) are not trustworthy otherwise. [tis clear
that (6.1) is an underdetermined system if M < 2
and an overdetermined system if M =3
Note that for satellite remote sensing, because
of the restrictions in view and illumination geo-
metries, K"K does not need to have bounded
inverse (Li et al., 2001; Verstracte et al., 1996;
Wang et al., 2007b, 2008). We believe that the
proposed optimization and regularization
method can be employed to find an approximate

solution _r:.r satisfying ‘ﬁ?r:[ — ¥n|| — min.

We choose the widely used 73 data sets
referred to by Li et al. (2001). These data sets
cover a large vanety of vegetative cover types,
and are fairly well representative of the natural
and cultivated vegetation. Table | summarizes
the basic properties of the data sets used in this
paper. To show the robustness of the developed
methods introduced in this paper, we consider

both the extreme case, i.e. only one observation
is considered as limited number of observations
and full data, and compare the retrieval results
by different regularization methods. Compan-
son results are given in Tables 2 and 3. In these
tables, NTSVD refers to numerically truncated
singular value decomposition; Tikhonov refers
to standard Tikhonov regularization in /> space;
[, sparse refers to regularization in /z — [, spaces
and TV regulanzation refers to total vanation
regularization method. The true white-sky
albedo (WSA) is calculated from well-posed
situations using AMBRALS (Algorithm for
MODIS (Moderate Resolution Imaging Spec-
troradiometer) Bidirectional Reflectance Ani-
sotropies of the Land Surface) (see Strahler
et al., 1999), i.e. full observation data. It should
be pointed out that the standard operational
algorithm used in AMBRALS does not work
for such severely ill-posed situations. If we
regard WSA>1 or WSA<0 as failed inversion,
it is clear that our proposed methods work for
all of the cases.

To show how the parameter estimation
evolves with increasing number of data, it is suf-
ficient to show the performance of the Tikhonov
regularization method. We partition the data sets
of each type into six parts, and then accumulate

Table 2. Comparison of computational values of the W5As from data sets in Table | for single observation
with the true W5As values (multiangular observations) for VisRed band

Data Methods Single observation True W5As
ranson soy.827 NTSVD 0.0445047 0.0405936
Tikhonov 0.0401528
|, sparse 0.0347181
TV regularization 0.0314538
kimes.orchgrass NTSVD 0.1082957 0.0783379
Tikhonov 0.0753925
|, sparse 0.0577019
TV regularization 0.0771534
parabola.| 994.asp-ifcl NT5VD 0.0364620 0.0227972
Tikhonov 0.0262501
|, sparse 0.0354550
TV regularization 0.0341585
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Table 3. Comparison of computational values of the W5As from the data sets in Table | for single observa-
tion with the true W5As values (multiangular observations) for Nir band

Data Methods Single observation True WS5As
ranson soy.827 NTSVD 0.4465763 0.3653728
Tikhonov 0.3996775
|, sparse 0.3543681
TV regularization 0.3510839
kimes.orchgrass NTSVD 0.3820207 0.2963261
Tikhonov 0.2708260
|, sparse 0.2804019
TV regularization 0.2834896
parabola.| 994.asp-ifc2 NTSVD 0.5517209 0.4240376
Tikhonov 0.3972022
|, sparse 0.5434159
TV regularization 0.5421131

the data with increasing number of observations.
Certainly, we can partition the data sets piece by
piece into small parts, but for high-volume
data it costs time and is unnecessary. The error
bars of the retrieved WSAs for VisRed band and
Nir band for Kimes orchgrass are illustrated in
Figures 1 and 2, respectively (the pattemns
are similar for Ranson soy and Parabola aspen
data). The figures reveal that the retrieved results
more closely approximate the true solutions
with increasing number of observations. This
phenomenon indicates that our algorithm is
stable and applicable for parameter inversion,
and at the same time it indicates that the accumu-
lation of data (information) is quite important for
land surface parameter estimation,

Next, we show that the regularization method
described herein works for satellite data even
with limited observations. As an example, we use
atmospherically corrected moderate resolution
imaging spectroradiometer (MODIS) 1B product
acquired on a single day as an example of single
observation BRDF at certain viewing direction.
Each pixel has different view zenith angle and
relative azimuth angle. The data MODO21-
KM.A2001135-150 with horizontal tile number
(26) and vertical tile number (4) were measured
in Shunyi county of Beijing, China. The three
parameters are retrieved by using this 1B product.

Enmy
=

e | 4 h i T ]
(=T AT

Figure |. Error bars of the WS5As for VisRed band
with increasing number of Kimes orchgrass data

Figure 3 plots the reflectance for band 1 of a cer-
tainday DOY=137. In MODIS AMBRALS algo-
rithm, when insufficient reflectances or a poorly
representative sampling of high-quality reflec-
tances are available for a full inversion, a database
ofarchetypal BRDF parameters is used to supple-
ment the data and a magnitude inversion is per-
formed (Strahler et al., 1999; Verstraete et al.,
1996). We note that the standard MODIS
AMBRALS algorithm cannot work for such an
extreme case, even for MODIS magnitude inver-
sion, since it is hard to obtain seasonal data asso-
ciated with a dynamic land cover in a particular
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Figure 2. Error bars of the YW5As for Nir band with
increasing number of Kimes orchgrass data

4

Figure 3. Reflectance for band | of MODO2 IKM.
A2001137

site. But our method still works for such an
extreme case because smoothness constraint 1s
implanted into the model already. We plot the
white-sky albedos (WSAs) retrieved by NTSVD,
Tikhonov regularization, [, sparse and total varia-
tion regularization for band | of one observation
(DOY=137) (e.g. Figure 4; the other images are
similar). From these mimages we see that the
albedo retrieved from insufficient observations
can preserve the albedo details. We conclude
that these developed regularization methods
can be considered useful methods for retneval
of land surface parameters and for computing
land surface albedos, and can be considered

i
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Figure 4. White-sky albedo retrieved by total varia-
tion regularization method

as supplement algorithms for the robust estima-
tion of the land surface BRDF/albedos.

We want to emphasize that our method can
generate smoothing data for helping retrieval
of parameters once sufficient observations are
unavailable. As we have pointed out in Wang
et al. (2007b, 2008) we do not suggest discarding
the useful history information (e.g. data that is
not too old) and the multiangular data. Instead,
we should fully employ such information if it
is available. The key to why our new algorithms
outperform previous algorithms is because our
algorithms are adaptive, accurate and very sta-
ble, which solves kernel-based BRDF model of
any order, which may be a supplement for
BRDF/albedo retrieval product.

For the MODIS sensor this 1s not a strict
restriction, since it aims at global exploration.
For other sensors, the period for their detection
of the same area will be longer than 20 days or
more. Therefore, for vegetation in the growing
season, the reflectance and albedos will change
significantly. Hence robust algorithms to
estimate BRDF and albedos in such cases are
highly desired. Our algorithms provide a proper
choice, since they can generate retrieval results
which approximate the true values of different
vegetation type ofland surfaces by capturing just
few observation times.

Moreover, for some sensors with high spatial
resolution, the quasi-multiangular data are
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Figure 5. Reflectance for band 5 of Landsat The-
matic Mapper Data (TM) on May 17, 2001

impossible to obtain, but with our algorithms
can achieve results. To show this advantage,
we test our regularizing algorithms to the Land-
sat Thematic Mapper (TM) data measured in
Shunyi county of Beijing, China. Figure 5 plots
the reflectance for band 5 on 17 May 2001.
The spatial resolution for the TM sensor on band
515 30 m. We only list the results calculated
using the sparse and non-smooth regularization.
Figure 6 illustrates the white-sky albedo using
the total vanation regularization method. The
retrieved results show that our algonthm works
for satellite data with high spatial resolutions.

2 Aerosol particle size distribution function
retrieval

In this subsection, we consider retrieving aero-
sol partile size distnibution function n{r) from
the attenuation equation (2.5). It is an infinite
dimensional problem with only a finite set of
observations, so it is improbable to implement
such a system by computer to get a continuous
expression of the size distribution function
n(r). Numerically, we solve the discrete prob-
lem of operator equation (2.5). Using collocation
(Wang et al., 2006a), the infinite problem can be
written in a finite dimensional form by sampling
some grids {’":}}11 in the interval [a, b]. Denoting

X

Figure 6. White-sky albedo retrieved by total var-
iation regularization method

by K = (Kij)y.n» Where Ky = mr Qu(rj,2ii),
;=n(r), yy=1(k;) and g = &(};), the afore-
mentioned regularization methods can be
applied to solve the distribution function. We
consider the Tikhonov regularization in Sobo-
lev space, i.e. the solution is written in the form
of x(2) = (K"K +aD) 'Ky with  solved by
root-finding of the non-linear equation (4.9) and
D determined by discretization of the Sobolev
norm ||x||.2, which is formed as the tridiagonal
matrix:

A+ —5 0 0

1 |
= 1ty —w®

where &, = =% is the gridding distance between
the gridding points. This is a well-behaved
matrix with condition number 1.041482 x 1¢*
for gridding nodes N =200 and interval
0.1, 4]um. Compared to Phillips-Twomey’s
formulation of regularization, the form of the
matrix D by the norm of the second differences

N—1
¥y —2x "‘ITLL

) results in a badly condi-

=2

tioned matrix D. For example, with N = 200,
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the largest singular value is 15.998012, the
smallest singular value is 6.495971 x 107",
This indicates that the condition number of
the matrix D defined by the ratio of the largest
singular value to the smallest singular value equals
2.462911 x 10'7. Hence, for small singular val-
ues of the discrete kemel matrix K. the scale
matrix D cannot have them filtered even with
large regularization parameter =.

The size distribution function mge(r) = 10.
S5r—-%exp(—10-1%r2) 1s used to generate syn-
thetic data. The particle size radius interval
of interest is (0.1, 2Jum. This aerosol particle
size distnbution function can be written as
nae(r) = hir)f(r), where h{r) is a rapidly
varying function of r, while f(r) is more
slowly varying. Since most measurements of the
continental aerosol particle size distribution
reveal that these functions follow a Junge distri-
bution (Junge, 1955), h(r) = """, where v* is
a shaping constant with typical values in the
range 2.0-4.0, therefore it is reasonable to use
hir) of Junge type as the weighting factor to
fir). In this paper, we choose v* =3 and
£(r) = 10.5¢ 2 exp (—10-2r-2), The form of this
size distribution function is similar to the one
given by Twomey (1975), where a rapidly
changing function h(r) = Cr— canbe identified,
but it is more similar to a Junge distribution
for r = 0.1pm.

We perform Tikhonov regularnization
method with D in the form of (6.2) and = deter-
mined by root finding method (4.7). In our
numerical simulations, the complex refractive
indices are assumed to be 0.005, 0.01, 0.05
and 0.1, respectively. The precision of the
approximation is characterized by the root
mean-square error (rmse);
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where "™ refers to the retrieved signals and
v refers to the measured signals.
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Figure 7. True and retrieved results with our inver-
sion method in the case of error level & = 0.005 and
different complex refractive indices
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Figure 8. lterative determining regularization para-

meters using root finding methods when the error
level & = 0.005

Retrieved aerosol particle size distnbutions
for noise level equaling 0.005 and different
complex refractive indices are shown in Fig-
ure 7 (noise at 0.05 is nearly identical). Note
that the regularization parameter = is itera-
tively chosen through root finding; their beha-
viours are illustrated in Figures 8 and 9 for
noise level equaling 0.005 and 0.05, respec-
tively. The root mean square errors (rmses)
are shown in Table 4. It reveals that for noise
level less than 0.1 the rmses are small, which
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Figure 9. Iterative determining regularization para-
meters using root finding methods when the error

level & = 0.05

indicates that our method is quite stable for
retrieval of aerosol particle size distribution
functions.

Vil Conclusion

We study the regularization and optimization
methods for solving the inverse problems in
remote sensing. Two problems are considered
as examples. One is the estimation of land surface
parameters; another is the retrieval of aerosol par-
ticle size distribution function. The problems are
formulated in functional space by introducing the
operator equations of the first kind. Bayesian

mathematical models and solution methods in
[, and /; spaces are developed. The total varia-
tion regulanzation methods are proposed. The
regularization strategies and optimization
solution techniques are fully descnibed. We
emphasize that although the methods intro-
duced in this paper are for land surface para-
meter retrieval and aerosol particle size
distribution function retrieval problems, they
can be employed in other inverse problems
in geosciences and quantitative remote sen-
sing. Numerical simulations for these prob-
lems are performed and illustrated.

Appendix

Gradient and Hessian computation of the
total variation regularization model
In discrete form, the M_(x) can be written as:

N
M.(x) =%Z ((Lix)) by (A1)
=]

The gradient of M-(x)can be obtained by for any
ue RV

2

N
LM, (x + ), ﬂ_TdZ ilx + 1))
=1

s T
inference theory is introduced. The general regu- hyleg = (hL” diag(¢'(x))Lx, u)
larization model for parameter retrieval problems .,
in I, — 1, (for p,q > 0) spaces, which can be
convex or non-convex, is proposed. The grady, (x) = M(x)x (A2)
Table 4. The rmses for different noise levels and different complex refractive indices

Refractive indices

Moise levels n =145 - 0.00; n=145-0.03 n = 1.50 - 0.02{
& = 0.005 1.6443 > 10~ 1.2587 x 107> 22773 x 1073
& = 0.01 1.6493 x 107 1.2720 x 1072 2.2847 x 1073
o =0.05 1.6996 x 10— 1.3938 > 10— 2.3504 x 103
o =0.1 1.0198 x 10— 1.0603 x 10— 9.4309 x 103
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where diag(¢'(x)) denotes the N x N diagonal
matrix whose i-th diagonal entry is &'((Lx)°),
Lis the N x (N + 1) matrix whose i-th row is
L; and:

M(x) = h L diag(¢'(x))L (A3

Now we
Vix) = 3|Kx
yields:

go back to the gradient of
— y||3. Straightforward calculation

grad, (x) = KT(Kx — y) (A4)

Therefore, the gradient of /. (x) becomes:

grad,(x) + grad,,(x)
= KT (Kx — y) + oM (x)x

dp (
grad: (x) = (AS)

The Hessian of J3.(x) would be complicated in
computation, it consists of the Hessians of
i (x) and M_(x). One may readily see that:
= K"K

Hessy . = Hess(\r(x)) (AG)

To obtain the Hessian ofM_(x), we need to
calculate:

& 1 o
otk Mol% + 00 §)ieg—0 = 20t0E
N %
> (Lilx + 1 +Ev) el s g

=]
Straightforward calculation yields that:
ss(M.(x)) = M'(x)x + M (x)

where M(x) is given in (A3) and M'(x) is an
operator defined by:

(A7)

M'(x)x = h L diag(2(Lx)*d"(x))L  (AS8)

where diag(2(Lx)"$"(x)) denotes the N x N diag-
onal matrix whose j-th diagonal entry is
2(Lx) " ((Lx)).

Note that ¢"(A) <0 for & > 0, hence non-
negativity may be lost in Hess(M.(x)). There-
fore, we drop the term M’(x)x in Hess(M_(x)) and
obtain an approximate Hessian of M_(x):

Hess (M. (x)) = M(x) (A9)

Hence an approximate Hessian of /3. (x) would
be:

Hessp « = K"K + oM (x) (A10)
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