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Abstract

The determination of the aerosol particle size distribution function using the particle spectrum extinction equation is an ill-posed
integral equation of the first kind. To overcome the ill-posedness, regularization techniques such as Phillips–Twomey’s regularization,
Tikhonov’s smooth regularization as well as some iterative methods were developed. However, most of the literature focuses on
improving the solvability of the problem without introducing some useful a priori information, which are essential to ill-posed
inverse problems, since it is known that, we are often faced with limited/insufficient observations in remote sensing. Therefore, we
restudy this problem. We first formulate the problem in l1 space and solve a nonnegative constrained problem to obtain a useful
a priori solution, then we use this solution to reformulate the problem in l2 space and solve a regularized problem. Numerical results
are based on the remotely sensed data by Sun-photometer CE 318 for Poyang lake region of Jiangxi Province and are performed to
show the efficiency and feasibility of the proposed algorithms.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Aerosol is a suspension of small solid or liquid particles in the atmosphere, which plays an important role in the
environment since they take part in many physical and chemical processes (Bohren & Huffman, 1983; Davies, 1974;
Mccartney, 1976; Twomey, 1977). It is well known that the characteristics of the aerosol particle size, which can be
represented as a size distribution function in the mathematical formalism, say n(r), plays an important role in affecting
the climate. So, it is necessary to determine the size distribution function of the aerosol particles. Since the relation-
ship between the size of atmospheric aerosol particles and the wavelength dependence of the extinction coefficient was
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first suggested by Ångström (1929), the size distribution began to be retrieved from extinction measurements. First,
Ångström inferred that the parameters of a Junge size distribution could be obtained from the aerosol optical thickness
(AOT) at multiple wavelengths and obtained the useful Ångström empirical formula of the Junge size distribution,
�aero =��−�, where �aero is the AOT, � is the turbidity coefficient, and � is the Ångström exponent reflecting the aerosol
size distribution.

The attenuation by aerosols can be written as an integral equation of the first kind

�aero(�) =
∫ ∞

0
�r2Qext(r, �, �)n(r) dr + �(�), (1)

where r is the particle radius; n(r) is the columnar aerosol size distribution (i.e., the number of particles per unit area
per unit radius interval in a vertical column through the atmosphere); � is the complex refractive index of the aerosol
particles; � is the wavelength; �(�) is the error/noise and Qext(r, �, �) is the extinction efficiency factor from Mie
theory. Since AOT can be obtained from the measurements of the solar flux density with Sun-photometers, one can
retrieve the size distribution by the inversion of AOT measurements through the above equations. This type of method is
called extinction spectrometry, which is not only the earliest method applying remote sensing to determine atmospheric
aerosol size characteristics but also the most matured method so far.

To overcome the oscillations in recovering the particle size distribution function n(r), various techniques have been
applied, e.g., Phillips–Twomey’s second difference method (Phillips, 1962; Twomey, 1963, 1975), regularization by
truncated singular value decomposition for LIDAR data (Bockmann, 2001), linear and nonlinear iterative techniques
(Chahine, 1970; Ferri, Bassini, & Paganini, 1995; Lumme & Rahola, 1994; Twomey, 1975;Yamamoto & Tanaka, 1969),
Tikhonov’s smooth regularization (Wang, Fan, Feng,Yan, & Guan, 2006), genetic algorithms (Ye et al., 1999), moments
methods (Heintzenberg, 1994; Wright, 2000; Wright et al., 2002) and computed tomography (Ramachandran, Leith,
& Todd, 1994). However, all of the methods do not consider how to incorporate useful a priori information from the
infinite solution space because the practical observations are insufficient due to the limitations of the devices. This paper
will address this problem and propose a useful retrieval method. Numerical experiments based on the Sun-photometer
CE 318 were performed to show the efficiency of the proposed solution methods.

The structure of the paper is organized as follows: Section 2 introduces the experimental site in this study and
the Sun-photometer specifications. Section 3 provides the methodology for the problem formulation in functional
and finite spaces. In Section 4.1, an efficient a priori solution in l1 space is presented, and an interior point solution
method is proposed; in Section 4.2, the damped Gauss–Newton method is described, and its regularization involving
a priori information is addressed in Section 4.3. In Section 4.4, the aerosol particle size distribution function retrieval
problem by the proposed method is addressed. Also a geometric a posteriori regularization parameter choice method
is introduced. In Section 5, we first perform theoretical simulations; then we use the ground-based remotely sensed
measurements to verify the numerical results. In Section 6, some concluding remarks are given. Finally, we provide
appendices which list basic information about the conception of “a priori” and “regularization”, the computation of a
priori by an interior-point solution method and the Wolfe line search for damped Gauss–Newton method.

Throughout the paper, we use the following notations: “:=” denotes “defined as”, “�n” denotes the discretization of
a function n, “argmax” and “argmin” denote “maximization for an argument” and “minimization for an argument”,
respectively, “max” and “min” denote “maximizing” and “minimizing” some functional, respectively, A† denotes the
(Moore-Penrose) generalized inverse, “AT” denotes the transpose of matrix A and “diag(·)” denotes a diagonal matrix.

2. Experimental site and instrument specifications

The investigations were carried out in October, 2005. The test area in this study is Yingtan city which is located in
Poyang lake region of Jiangxi Province in China. It is a typical test region in many applications. The altitude and the
pressure of Yingtan city average 45.2 m and 1013.4 hPa, respectively, the relative humidity averages 74%, the wind
speed varies from 0.3 to 3.3 m/s. We performed the data measurement in a region which is located in the longitude
116◦55′33.7′′ east of Greenwich, latitude 28◦12′30′′ north. It is noted that Yingtan city is not a big city, the traffic may
not cause either the local air pollution or the thermal and humidity regimes in the atmosphere of the measurement area.

The Sun-photometer for measuring the attenuation of aerosols is CE 318 which is illustrated in Wang et al. (2006).
It has four aerosol channels: 440, 670, 870, and 1020 nm, which can be used for estimating AOT. The instrument
automatically computes the position of the Sun and tracks its movement and is also useful for the atmospheric correction
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of remote sensing data. Since the CE 318 can only supply four aerosol channels, only four observations are obtained,
which are insufficient for the retrieval of the particle size distribution function n(r) by solving Eq. (1). Therefore,
numerical difficulty occurs.

3. Problem formulation

The general formulation of inversion schemes using operator theory in functional space is briefly described and
illustrated in finite space.

3.1. Operator equations of the first kind

A common feature for all particle size distribution measurement systems is that the relation between noiseless
observations and the size distribution function can be expressed as a first kind Fredholm integral equation (Nguyen &
Cox, 1989; Shifrin & Zolotov, 1996; Twomey, 1975; Voutilainenand & Kaipio, 2000; Wang, 2007)

∫ b

a

k(x, y)n(y) dy = o(x), (2)

where [a, b] is the integral interval which characterizes the lower and upper limits of the size range of interests, o(x)

is an error-free observation, x = log r and k(x, y) is a weight function (or more generally, the kernel function) that
characterizes the classification, losses and detection properties of the measurement system.

The observations are usually contaminated by noise. Hence, relation (2) between the observation o(x) and the size
distribution n(x) is

∫ b

a

k(x, y)n(y) dy + �(x) = o(x) + �(x) = d(x), (3)

where �(x) is the unknown observation error. Therefore, the inverse problem is to solve a perturbed Fredholm integral
equation of the first kind to get the size distribution n(x).

Let us rewrite Eq. (1) in the form of the abstract operator equation

K : F −→ O,

(Kn)(�) + �(�) = d(�), (4)

where (Kn)(�) := ∫ ∞
0 k(r, �, �)n(r) dr; k(r, �, �) = �r2Qext(r, �, �); F denotes the function space of aerosol size

distributions; and O denotes the observation space. Both F and O are considered to be separable Hilbert spaces. Note
that �aero(�) in Eq. (1) is the measured term, and it inevitably induces noise/errors. Hence, d(�) is a perturbed right-hand
side. Using operator symbol, Eq. (4) can be written as

Kn + � = d. (5)

3.2. Discrete formulation in finite spaces

Note that Eq. (4) is an infinite dimensional problem with only a finite set of observations, so it is improbable to
implement such a system by computer to get a continuous expression of the size distribution n(r). Using collocation
(Wang et al., 2006), the infinite problem can be written in a finite dimensional form by sampling some grids {rj }Nj=1 in
the interval of interests [a, b].

Denoting by K = (Kij )M×N , �n, �� and �d the corresponding vectors, we have

K�n + �� = �d. (6)

This discrete form can be used for computer simulations.
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4. Theoretical development

4.1. Solving for an efficient a priori information in l1 space

It is clear that when the number of observations is insufficient, the inversion of Eq. (4) is ill-posed. The ill-posedness
occurs not only for the instability driven by the small algebraic characteristic spectrum but also for choosing a suitable
solution from the solution set that consists of infinite solutions.

The ill-posedness is an intrinsic feature of the inverse problem. Unless some additional information is imposed, such
as monotonicity, smoothness, boundedness or the error bound of the raw data, the difficulty is hard to be resolved.
As is pointed out in Xiao, Yu, and Wang (2003) that, a lack of information cannot be remedied by any mathematical
trickery. However, we can retrieve most of the information of the original problem by some kind of regularization.
The regularization mentioned here, means that the solution can be found by replacing the original problem with a
well-posed problem. One of the techniques is the improvement of the solvability by extension of the solution space,
which will be presented in the following paragraph; another technique is seeking an optimized solution of a variational
problem.

The particle size distribution function of aerosols is always nonnegative. Therefore, to extend the solution space, we
solve an l1 norm problem

min ‖�n‖l1 subject to K�n = �d, �n�0. (7)

It is clear that Eq. (7) is equivalent to

min eT�n subject to K�n = �d, �n�0, (8)

where e is a vector with all components 1. Then the optimal solution of problem (8) is also a solution of problem (7).
So the remaining task is to solve Eq. (8) efficiently.

The l1 norm solution method seeks a feasible solution within the feasible set

S = {�n : K�n = �d, �n�0}.

It is actually searching for an interior point within the feasible set S; it is called the interior point method (Ye, 1997).
The dual standard form of Eq. (8) is in the form

max �dT�z subject to s = e − KT�z�0. (9)

Therefore, the optimality conditions for (�n, �z, s) to be a primal–dual solution triplet are

K�n = �d, (10)

KT�z + s = e, (11)

S̃F̃ e = 0, (12)

�n�0, s�0, (13)

where

S̃ = diag(s1, s2, . . . , sN ), F̃ = diag(n1, n2, . . . , nN).

The notation diag(·) denotes the diagonal matrix whose only nonzero components are the main diagonal line.
The interior point method generates iteration points {�nk, �zk, sk} such that �nk > 0 and sk > 0. As the iteration index k

approaches infinity, the equality-constraint violations ‖ �d − K�nk‖ and ‖KT�zk + sk − e‖ and the duality gap �nT
k sk are

driven to zero, yielding a limiting point that solves the primal and dual linear problems.
Primal–dual methods are a variant of Newton’s method applied to the system of equations formed by the optimality

conditions, Eqs. (10)–(12). Given the current iteration point [�nk, �zk, sk]T and the damping parameter �k ∈ [0, 1], the
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search direction [	�n, 	�z, 	s] is generated by solving the linear system
⎡
⎢⎣
K 0 0

0 KT I

S̃k 0 F̃k

⎤
⎥⎦

⎡
⎢⎣

	�n
	�z
	s

⎤
⎥⎦ =

⎡
⎢⎣

�d − K�nk

e − KT�zk − sk

�k
ke − S̃kF̃ke

⎤
⎥⎦ , (14)

where �k = (1/N)�nT
k sk . Choosing the step size �k to retain the positivity of �n and s, and step to a new point

�nk+1 := �nk + �k	�n, �zk+1 := �zk + �k	�z, sk+1 := sk + �k	s . (15)

The solution �n denoted by �n0, as an a priori information, will be used in the iterative regularization process.

4.2. Damped Gauss–Newton method

Denoting by R(�n) = K�n − �d , we consider the functional in l2 space

J [�n] = ‖R(�n)‖2
l2

. (16)

It is easy to see that the gradient and Hessian of J [�n] are, respectively, given by

g(�n) = KT(K�n − �d), H = KTK. (17)

The Gauss–Newton method computes a step sk = �nk+1 − �nk by

min 1
2‖R(�nk) + R′(�nk)s‖2, (18)

which leads to the solution

sk = −R′(�nk)
†gk = −H−1gk , (19)

�nk+1 = �nk + sk , (20)

where gk = g(�nk).
In the damped Gauss–Newton method in each iteration a line search technique is used to ensure a decreased

direction, i.e.,

sk = −�kH
−1gk , (21)

where �k is obtained by solving one-dimensional nonlinear optimization problem

�k = argmin� �(�) := J [�nk + �sk]. (22)

In our calculation, the Wolfe line search technique is used (see Appendix D for details).
However, due to the rank deficiency of H the problem is ill-posed and is quite difficult to solve; therefore, regularization

is necessary to tackle the ill-posedness.

4.3. Regularization by incorporating an efficient a priori information

A regularized damped Gauss–Newton method refers to computing a Gauss–Newton step sk by

sk = −�k(H + �kL)−1gk , (23)

where L is a smooth matrix which can be chosen by users, �k is the regularization parameter. However, this regularization
does not contain any information about the solution. We consider an a priori information-imposed method

sk = −�k(H + �kL)−1(gk + �k(�nk − �n0)), (24)

where �n0 is the so-called a priori information about the solution �n. The convergence theory and methods have been
thoroughly investigated by Bakushinsky and Goncharsky (1994).
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4.4. Aerosol particle size distribution function retrieval

To retrieve the aerosol particle size distribution function n(r), we need to solve Eqs. (7) and (24) for the AOT at
different wavelengths. We are interested in the particle size in the interval [0.1, 10]�m. A coarse difference gridding
(N �20) induces large quadrature errors; therefore, we choose a relatively large difference gridding, N = 200.

To perform the numerical computation, we apply the technique developed in King, Byrne, Herman, and Reagan
(1978), that is, we assume that the actual aerosol particle size distribution function consists of the multiplication of two
functions h(r) and f (f ) : n(r) = h(r)f (r), where h(r) is a rapidly varying function of r, while f (r) is more slowly
varying. In this way we have

�aero(�) =
∫ b

a

[k(r, �, �)h(r)]f (r) dr , (25)

where k(r, �, �) = �r2Qext(r, �, �) and k(r, �, �)h(r) is the new kernel function corresponding to a new operator 
:

(
f )(r) = �aero(�). (26)

The discretization of 
 is again denoted by the matrix K.
Selection of the regularization parameter � is also a major issue in numerical computation. In theory, � can neither

be too large nor be too small. A larger � yields a well-posed problem but the solution is far away from the true value.
Whereas a smaller � yields a better approximation but with large instabilities. Therefore, a trade-off must be found to
balance the ill-posed nature of the discrete matrix K. There are two types of parameter selection methods: an a priori
way and an a posteriori way. For a priori choice of the regularization parameter, � should be limited to within (0, 1).
Since the error or noise level � is not always to be estimated, we will not apply the a posteriori technique developed in
Wang et al. (2006). Instead, we choose the regularization parameter � in a geometric manner:

�k = �0 · �k−1, (27)

where �0 ∈ (0, 1) which can be provided by the user, for example, �0 = 0.1; � ∈ (0, 1) is the factor of proportionality
and k is the kth iteration. It is quite natural to use this parameter selection rule, since in theory, �k should approach zero
as k approaches infinity.

The smooth matrix L is chosen as a triangular matrix in the form

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 1

h2
r

− 1

h2
r

0 · · · 0

− 1

h2
r

1 + 2

h2
r

− 1

h2
r

· · · 0

...
. . .

. . .
. . .

...

0 · · · − 1

h2
r

1 + 2

h2
r

− 1

h2
r

0 · · · 0 − 1

h2
r

1 + 1

h2
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

where hr is the step size of the grids in [a, b], which can be equidistant if hr = (b − a)/(N − 1), or different if hr is
variable or adaptive. This matrix is shown to be effective in stabilizing oscillations of the solution (Wang et al., 2006).

For the solution of the linear matrix-vector equation, Eq. (24), we use the Cholesky decomposition method. This
method is stable for finding a solution from a symmetric definite system with smaller computational cost O( 1

6N3).

5. Numerical experiments

5.1. Theoretical simulation

To verify the feasibility of our inversion method, we have tested it by computer simulations. The simulation consists
of two steps. First, a simulated extinction signal (input signal) is generated by computer according to Eq. (3) for a given
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Fig. 1. Input and retrieved results with our inversion method in the case of error level � = 0.005 and different complex refractive indices.

number of particle size distribution ntrue(r) (input distribution) and for a given complex refractive index �. Then, the
input signal is processed through our algorithm, and the retrieved distribution is compared with input one.

In practice, an exact discretization form �o of the right-hand side of Eq. (2) cannot be obtained accurately; instead a
perturbed version �d is obtained. Numerically, a vector �d should contain different kind of noises. Here, for simplicity,
we assume that the noise is additive, and is mainly the Gaussian random noise, that is, we have

�d = �o + � · rand(size(�o)), (29)

where � is the noise level in (0, 1), rand(size(�o)) is the Gaussian random noise with the same size as �o.
The precision of the approximation is characterized by the root mean-square error (rmse),

rmse =
√√√√ 1

M

M∑
i=1

(�comp(�i ) − �meas(�i ))
2

(�comp(�i ))
2 , (30)

which describes the average relative deviation of the retrieved signals from the true signals. In which, �comp refers to
the retrieved signals, �meas refers to the measured signals.

In our example, the size distribution function ntrue(r) is given by

ntrue(r) = 10.5r−3.5 exp(−10−12r−2).

The particle size radius interval of interest is [0.1, 2]�m. In the first place, the complex refractive index � is assumed
to be 1.45 − 0.00i. Then we invert the same data, supposing � has an imaginary part. The complex refractive index
� is assumed to be 1.45 − 0.03i and 1.50 − 0.02i, respectively. Numerical illustrations are plotted in Figs. 1–3 with
noise levels � = 0.005, 0.01 and 0.05 for different refractive indices, respectively. The rmse’s for each case are shown
in Table 1. For finding the a priori information �n0, we follow the algorithm described in Appendix C and choose
the starting point for the primal–dual solution triplet as (�n1, �z1, s1) = (en, ez, es), where en, ez, es are column vectors
corresponding to �n1, �z1, s1 with components all unity. The iteration steps to get the a priori distribution for each case are
shown in Table 2. For illustration of the normalized a priori distribution �n0, we only plot it for the case �=1.45−0.00i

and � = 0.005 (see Fig. 4 for details).
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Fig. 2. Input and retrieved results with our inversion method in the case of error level � = 0.01 and different complex refractive indices.
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Fig. 3. Input and retrieved results with our inversion method in the case of error level � = 0.05 and different complex refractive indices.
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Table 1
The root mean-square errors for different noise levels

Noise levels � = 1.45 − 0.00i � = 1.45 − 0.03i � = 1.50 − 0.02i

� = 0.005 1.6443 × 10−4 1.2587 × 10−4 2.2773 × 10−4

� = 0.01 1.6493 × 10−4 1.2720 × 10−4 2.2847 × 10−4

� = 0.05 1.6996 × 10−4 1.3938 × 10−4 2.3504 × 10−4

Table 2
The iteration steps for finding a priori information in different cases

Noise levels � = 1.45 − 0.00i � = 1.45 − 0.03i � = 1.50 − 0.02i

� = 0.005 17 13 16
� = 0.01 17 13 16
� = 0.05 17 13 16
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Fig. 4. A priori particle size distribution n0.

The proper choice of the a priori distribution �n0 is very important for the success of the Gauss–Newton method.
Without this information, the Gauss–Newton method may not converge to the right solution. For example, in our
simulation, if we choose the starting point as [0.1, 0.1, . . . , 0.1]T and implement the method without considering this
information, the algorithm diverges.

Our computer simulation method is not affected too much by the variation of the complex refractive index and noise.
Therefore, our method is stable for retrieving aerosol particle size distribution functions.

5.2. Discussions on numerical results

We chose the ground-measured data by the Sun-photometer CE 318 (for illustration of the device, refer to Wang
et al., 2006) to test the feasibility of the proposed algorithm. We have performed successive in situ experiments using
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Fig. 5. The air mass variation at local time from October 17 to October 31, 2005.

the CE 318 from October 17 to October 31, 2005. The meteorological data was provided by the Ying Tan Agricultural
Ecological Station of CERN (Chinese Ecosystem Research Network), which belongs to the Nanjing Institute of Soil
Science of the Chinese Academy of Sciences.

Only the days October 17–20, 24, 26, 27 and 31 were used for aerosol inversion. The particle size in the range
[0.1, 10]�m is examined. The days, October 17–20, were clean days with sunshine. The average wind speed was low,
and the horizontal visibility was high. On October 24–30, the weather conditions varied frequently. But on those days,
since the Sun-photometer CE 318 can track the sun and record the digital numbers (DNs), we also chose the AOT of
those days to make inversion.

The air mass history from October 17 to October 31 is plotted in Fig. 5. It is shown that the air mass did not change
too much at local time in different days and at the time from 8:00 in the morning to 16:00 in the afternoon, but varied
rapidly from 16:00 to 17:00. We calculated the AOT at different wavelengths � (�m), using the data measured in the
afternoon on October 17–20, 24, 26, 27 and 31. The plots of the AOT variations with regard to the wavelength � on
these eight days are illustrated in Fig. 6. The slopes of the AOT variation are similar. It decreases with the increase of
the wavelength. Evidently, the AOT can change at different times of a day. The magnitudes in these graphs indicate
that the air is slightly polluted.

The climate of Yingtan is tropical/subtropical, and the wind system influences large climatic regions and reverses
direction seasonally. The ground of the Yingtan Agricultural Ecological Station is mostly composed of red soil, so
the atmospheric ferric oxide, iron hydroxide and sulfur depositions constitute the common particulates. From the
meteorological data in the period October 17–31, we assume that the composition of the atmospheric aerosols consists
of both small and large particles. Both the scattering and absorption of the particles play a major part. Therefore, a
complex refractive index value of � = 1.50 − 0.095i was used to perform the inversion. More detailed explanation
can be found in Junge (1963), Weindisch and von Hoyningen-Huen (1994), and Reagan, Byrne, King, Spinhirne, and
Herman (1980). In the numerical experiments, we chose the initial value �0 of the regularization parameter as 0.1.
Then, each �k was iteratively calculated by the iteration formula given in Section 4.4. According to the regularization
theory (Tikhonov & Arsenin, 1977; Xiao et al., 2003), when the computed solution approaches the true solution, the
regularization parameters should approach the optimum value �∗, which should be a sufficiently small number. Our
experiments also reveal this fact. The parameters �k become sufficiently small (nearly zero) after successful iterations
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Fig. 6. Variation of aerosol optical thickness from October 17 to October 31 (PM), 2005.
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in every measurement. By our algorithms, the retrieval results of the number of size distribution function n(r) on
October 17–31 are plotted in Fig. 7 for the chosen data in the afternoon. The figure indicates that the aerosol particles
do not decrease rapidly. In all of the selected days, there are several oscillations of the particle size distribution function
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Fig. 8. A priori particle size distribution n0 in October (PM), 2005.

near the radius 1.0 �m. Outside the region containing 1.0 �m, they change smoothly. For illustration of the normalized
a priori distribution �n0, see Fig. 8 for details. The number of iteration steps to get �n0 is 11. From our experiments
and the local environment observation, we conclude that the aerosol particle size distribution of Yingtan city is mainly
small particles. The large particles of size 5–10 �m are mainly composed of ferric oxide, iron hydroxide and sulfur
depositions. The results are consistent with the local air conditions and our observations.

6. Concluding remarks and future research

In this paper, we investigate the regularization methods for the solution of the atmospheric aerosol particle size
distribution function retrieval. We reformulate the problem in functional space by introducing the first kind Fredholm
integral equations, then the solution methods in l1 and l2 spaces are considered. The interior point solution method for
finding an efficient a priori and regularized damped Gauss–Newton method for fast retrieval are proposed. We want
to emphasis that there are different ways which can be developed to impose a priori information (Wang, 2007). For
example, (P1) the unknowns �n can be bounded. This method requires a good a priori upper bound for �n; (P2) applying
different weights to the components of �n, then solve Eq. (6) under the constraint of the weights; (P3) imposing historical
information on �n provided that such historical information exists; (P4) simplifying the physical model by solving a lp

norm problem, which means the unknowns �n can be obtained under the lp scale.
We first did theoretical simulations to verify the feasibility of our inversion method. Our results show that the proposed

method is quite stable and insensitive to complex refractive index � and noise levels.
Then, we applied our proposed method to the inversion of real extinction data obtained by adapting a commercial

Sun-photometer CE 318. The numerical experiments illustrate that our new algorithm works well for the retrieval of
aerosol particle size distribution functions.

Finally, we want to point out that our proposed method is also applicable to geophysical inverse problems and other
research area in quantitative remote sensing (Bakushinsky & Goncharsky, 1994; Li & Wang, 1995; Wang, 2007). Our
future research will investigate more robust regularization methods and develop new solution methods, and will do
some numerical verifications based on ground-based remotely sensed data and satellite-based remotely sensed data in
typical test area of China.
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Appendix A. Conception of regularization

We saw in Section 3 that aerosol particle size distribution function inversion problem can be formulated as operator
equations of the form

Kn = o, (A.1)

where K is a linear compact operator between Hilbert spaces F and O.
A regularization strategy is a family of linear and bounded operators

�� : O → F, � > 0, (A.2)

such that

��Kn = n for all n ∈ F , (A.3)

i.e., the operators ��K converge pointwise to the identity.
Refer to our method, the �� is defined as

�� = (K∗K + �L)−1K∗, (A.4)

where L is a pre-assigned operator, K∗ is the adjoint operator of K, � ∈ (0, 1).

Appendix B. Conception of a priori information

By minimizing

1
2‖Kn − o‖2 + 1

2�‖L1/2n‖2 (B.1)

we obtain

n� = ��o. (B.2)

Let us consider a different form of the minimization problem

min{ 1
2‖Kn − o‖2 + ��(n − n0) : n ∈ F }, (B.3)

where n0 is the trial solution, � > 0 is the regularization parameter and � is the stabilizing functional.
The a priori information/knowledge refers to how to choose the stabilizing functional � and the trial solution n0,

which is an information (or restrictions) about smoothness of a solution and give regularization algorithm which
approximate the normal solution of Eq. (A.1).

The a priori information is quite important for obtaining a stable solution and accelerating the convergence rate of
the algorithm.
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Refer to our method, the a priori is: (1) choosing n0 by solving an l1 norm problem in l1 space; (2) applying
regularization algorithm in l2 space.

Appendix C. Computing an a priori by searching for an interior point solution

The a priori in this section refers to choosing n0 by solving an l1 norm problem in l1 space.
The algorithm described in Section 4.1 is a special case of the constrained linear programming problem

min cT�n subject to K�n = �d, �n�0, (C.1)

where �n is a vector of N variables. The dual problem of (C.1) is

max �dT�z subject to KT�z + s = c, s�0. (C.2)

To solve this problem, we consider the logarithmic barrier problem parameterized by the positive barrier parameter 
:

min cT�n − 

N∑

j=1

log(nj ) subject to K�n = �d, �n�0. (C.3)

The barrier function satisfies

lim
nj →0

−
 log(nj ) = ∞. (C.4)

If �n > 0 initially, then barrier function maintains �n > 0. Define optimality conditions for barrier problem

L(�n, �z) = cT�n − 

N∑

j=1

log(nj ) − �zT(K�n − �d). (C.5)

Differentiation gives

�L

�nj

= cj − 
n−1
j − KT:j �z,

�L

��zi

= �di − Ki: �n, (C.6)

where K:j means the jth column of K, Ki: means the ith row of K. The above expression can be simply written as
matrix–vector form

grad�n L(�n, �z) = c − 
D−1e − KT�z, grad�z L(�n, �z) = �d − K�n, (C.7)

where

D =

⎡
⎢⎢⎢⎢⎢⎣

n1 0 · · · 0

0 n2 · · · 0

...
...

. . .
...

0 0 · · · nN

⎤
⎥⎥⎥⎥⎥⎦

. (C.8)

This yields the Karush–Kuhn–Tucker conditions

KT�z = c − 
D−1e, K�n = �d, �n > 0. (C.9)

If we define s = 
D−1e, we have the optimality conditions

KT�z + s = c, K�n = �d, Ds = 
e, �n > 0. (C.10)

A feasible solution (�n, �z, s)T to this system is both primal feasible, i.e., �n ∈ Sp ={�n : K�n= �d, �n > 0} and dual feasible,
i.e., (�z, s) ∈ SD = {(�z, s) : KT�z + s = c, s = 
D−1e > 0}.
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Considering the dual gap cT�n − �dT�z = �nTs = 
N , therefore, numerically, we solve a nonlinear equation

F(�n, �z, s) =
⎡
⎢⎣

K�n − �d
KT�z + s − c

Ds − �
e

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦ , (C.11)

where � is the damping parameter in [0, 1].
Assume that (�nk, �zk, sk)

T is given, then one iteration of Newton method to F(�n, �z, s) = 0 yields

grad F(�nk, �zk, sk)

⎡
⎢⎣

d�n
d�z
ds

⎤
⎥⎦ = −F(�nk, �zk, sk). (C.12)

Since

grad F(�nk, �zk, sk) =
⎡
⎢⎣
K 0 0

0 KT I

Sk 0 Dk

⎤
⎥⎦ , (C.13)

we obtain⎡
⎢⎣
K 0 0

0 KT I

Sk 0 Dk

⎤
⎥⎦

⎡
⎢⎣

d�n
d�z
ds

⎤
⎥⎦ =

⎡
⎢⎣

�d − K�nk

c − KT�zk − sk

−Dksk + �
ke

⎤
⎥⎦ . (C.14)

We give the algorithm as follows:

Algorithm (Computing an interior point solution).

(1) Initialization: choose (�n1, �z1, s1)
T with �n1, �z1 > 0, and three tolerances ��n, ��z, �s > 0;

(2) Iteration: for k from 1 to ∞;
(3) Calculate the residuals

rk
�n = �d − K�nk ,

rk
�z = c − KT�zk − sk ,


k = 1

N
�nT
k sk;

(4) If ‖rk
�n‖���n, ‖rk

�z ‖���z, ‖
k‖��s , Stop;
(5) Choose � ∈ (0, 1) and solve (C.14);
(6) Compute

�max = argmax��0

{[ �nk

sk

]
+ �

[
d�n
ds

]
�0

}
; (C.15)

(7) For some � ∈ (0, 1), set

� := min{��max, 1};
(8) Update

�nk+1 := �nk + �d�n,

�zk+1 := �zk + �d�z,

sk+1 := sk + �ds .
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Example (Computing an interior point solution). To clearly present our method, we give a specific calculation example,
which is a constrained minimization problem

min −1n1 − 2n2 subject to n1 + n2 = 1, n1, n2 �0. (C.16)

If we set �n = [n1 n2]T, c = [−1 − 2]T, K = [1 1], �d = 1, then following the above mentioned steps, we have

F(�n, �z, s) =
⎡
⎢⎣

K�n − �d
KT�z + s − c

Ds − �
e

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦ , (C.17)

where �z = [z1 z2]T, s = [s1 s2]T, D = diag(n1, n2), 
 = 1
2 �nTs, e = [1 1]T, � = 0.1 is the damping parameter in [0, 1].

It is easy to identify

grad F(�nk, �zk, sk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0

0 0 1 1 0

0 0 1 0 1

s1 0 0 �n1 0

0 s2 0 0 �n2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, following the above algorithm, we obtain after seven iteration steps: the solution is �n∗ = [0.0000 1.0000]T,
the dual gap is sT�n∗ = 1.0042e − 007, the minimization value of the object function is cT�n∗ = −2.0000.

Appendix D. Damped Gauss–Newton method with line search

Consider the minimization problem

min J [�n] := 1
2‖R(�n)‖2. (D.1)

The Gauss–Newton method computes a step sk = �nk+1 − �nk by solving the minimum norm of the linear least squares
problem

min 1
2‖R(�nk) + R′(�nk)s‖2, (D.2)

which leads to sk = −H−1gk and �nk+1 = �nk + sk .
The damped Gauss–Newton method refers to a line search technique being used to determine a descent direction

(Nocedal & Wright, 1999), i.e., finding a damping parameter �k and deciding how far to move along this direction,

sk = −�kH
−1gk . (D.3)

In computing the damping parameter �k , we face a tradeoff. We would like to choose �k to give a substantial reduction
of J, but at the same time, we do not want to spend too much time making the choice. A popular inexact line search
condition stipulates that �k should first of all give sufficient decrease in the objective function J, as measured by the
following inequality:

J (�nk + �ksk)�J (�nk) + c1�kg
T
k sk , (D.4)

for some constant c1 ∈ (0, 1).
The sufficient decrease condition is not enough by itself to ensure that the algorithm makes reasonable progress,

because it is satisfied for all sufficiently small values of �. To rule out unacceptably short steps we introduce a second
requirement, which requires �k to satisfy

g(�nk + �ksk)
Tsk �c2g

T
k sk , (D.5)

for some constant c2 ∈ (c1, 1), where c1 is the constant from (D.4).
Conditions (D.4)–(D.5) are called Wolfe conditions. In our algorithm, we chose c1 = 0.1 and c2 = 0.4.
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