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Abstract: Irregular surface flattening, which is based on a boundary conforming grid and the transformation between curvilinear and
Cartesian coordinate systems, is a mathematical method that can elegantly handle irregular surfaces, but has been limited to obtaining
first arrivals only. By combining a multistage scheme with the fast-sweeping method (FSM, the method to obtain first-arrival traveltime in
curvilinear coordinates), the reflected waves from a crustal interface can be traced in a topographic model, in which the reflected wave-
front is obtained by reinitializing traveltimes in the interface for upwind branches. A local triangulation is applied to make a connection
between velocity and interface nodes. Then a joint inversion of first-arrival and reflection traveltimes for imaging seismic velocity
structures in complex terrains is presented. Numerical examples all perform well with different seismic velocity models. The increasing
topographic complexity and even use of a high curvature reflector in these models demonstrate the reliability, accuracy and robustness
of the new working scheme; checkerboard testing illustrates the method’s high resolution. Noise tolerance testing indicates the method’s
ability to yield practical traveltime tomography. Further development of the multistage scheme will allow other later arrivals to be traced
and used in the traveltime inversion.
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1.  Introduction

The orogenic belts as well as basin-mountain coupling regions al-

ways have strongly varying topographies, which makes rather dif-

ficult  the  accurate  reconstruction  of  subsurface  structures.  This

problem is  quite common because seismic observations are usu-

ally  made  on  such  irregular  structures  as  orogenic  belts,  basins,

and transition zones (Teng JW et al., 1987, 2003; Kaila and Krishna,

1992; Zeng  RS  et  al.,  1995; Li  SL  and  Mooney,  1998; Artemieva,

2003; Carbonell et al.,  2004; Gao R et al.,  2005; Wu CL et al.,  2005;

Wang CY et al., 2000, 2007; Bai ZM et al., 2007; Zhang ZJ and Klem-

perer, 2005, 2010; Tian XB et al., 2011; Zhang ZJ et al., 2011). In this

context, achieving  accurate  traveltime  tomography  for  topo-

graphies that are irregular is essential to constructing high-accur-

acy  models,  whether  based  on  conventional  ray  tracing  (Julian

and  Gubbins,  1977; Cassell,  1982; Um  and  Thurber,  1987; Sam-

bridge, 1990; Zelt and Smith, 1992; Koketsu and Sekine, 1998; Xu T

et  al.,  2006, 2010, 2014)  or  on  grid-based  traveltime  schemes

(Vidale,  1988; Podvin  and  Lecomte,  1991; van  Trier  and  Symes,

1991; Qin FH et al.,  1992; Cao SH and Greenhalgh, 1994; Kim and

Cook, 1999; Afnimar and Koketsu, 2000; Qian JL and Symes, 2002).

The grid-based solvers have proven to be considerably faster than

classical ray  tracing,  and  problems  such  as  shadow  zones,  mul-

tipathing, and barrier penetration can be easily handled.

Most  modern  tomographic  techniques  addressing  an  irregular

surface are  based  on  unstructured  grids,  which  is  computation-

ally inefficient  in  model  parameterization  and  traveltime  calcula-

tion (Kimmel and Sethian, 1998; Sethian, 1999; Sethian and Vladi-

mirsky,  2000; Rawlinson  and  Sambridge,  2004a, b; Qian  JL  et  al.

2007a, b; Kao  CY  et  al.,  2008; Lelièvre  et  al.,  2011).  Unlike  these

techniques, the structured grid-based schemes usually  handle  ir-
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regular  surfaces  by  using model  expansion (Vidale,  1988; Reshef,

1991; Hole,  1992; Ma T  and Zhang Z,  2014a, b, 2015)  or  irregular

surface flattening (Haines,  1988; Lan HQ and Zhang ZJ,  2011a, b,

2013a, b; Lan HQ et al., 2012). The former scheme usually employs

a stair-step approximation of the irregular surface or a flat low-ve-

locity  layer  covering  the  surface,  which  may  cause  accuracy  loss

and even distorted images. The latter scheme takes advantage of

a boundary conforming grid and a transformation from Cartesian

to  curvilinear  coordinates,  allowing  the  irregular  topographic

model to be mathematically flattened. In this method, first-arrival

traveltimes  can  be  obtained  by  solving  the  topography-depend-

ent  eikonal  equation  (hereafter  TDEE)  (Lan  HQ  and  Zhang  ZJ,

2013a).

On the other  hand,  reflected waves revealed by deep seismic re-

flection profiling  may  be  numerous  and  even  have  large  amp-

litude if the seismic impedance is great; they can be very useful in

probing the  crust,  and  are  therefore  potentially  a  valuable  re-

source for seismic imaging. Reflected waves also contain informa-

tion of both the velocity of the elastic medium and the seismic re-

flector and hence can be used to make joint inversion for velocity

structure and interface depths (Li SL and Mooney, 1998; Knapp et

al.,  2004; Scarascia  and  Cassinis,  1997; Zhang  ZJ  and  Klemperer,

2010), which is a natural complement of migration imaging (Rawl-

inson and Goleby, 2012). Having a larger set of seismic first-arrival

and reflection data and the right tool  to carry out joint  inversion

of all of them is a task worth addressing. A number of grid-based

schemes  have  been  proposed  for  tracking  reflected  waves,  such

as the two-way approach and the multistage scheme, but most of

them are based on the assumption of a flat surface and therefore

cannot be used with irregular topography (Benamou, 1996; Symes

and  Qian  JL,  2003; Podvin  and  Lecomte,  1991; Riahi  and  Juhlin,

1994).

The aim of this  paper is  to obtain accurate seismic velocity mod-

els for irregular free surfaces, by using a mathematical surface flat-

tening  strategy  and  a  multistage  working  scheme  and  by  taking

advantage  of  first-arrival  and  reflection  traveltime  data  provided

by deep seismic experiments. To obtain first-arrival traveltimes we

use the fast-sweeping method (FSM) to solve TDEE formulated in

curvilinear coordinates. To track reflected waves on a crustal inter-

face we use a multistage scheme via first-arrival wavefront solved

by  FSM.  We  then  present  a  joint  inversion  method  of  first-arrival

and reflection traveltimes to determine velocity models for an ir-

regular  surface.  We have arranged this  paper  as  follows:  first,  we

briefly describe the irregular surface flattening scheme, including

the boundary conforming grid, the topography-dependent eikon-
al equation, and the method for computation of first-arrival travel-
times and ray paths. Next, we introduce the method for computa-
tion of reflection traveltimes and ray paths, and then the joint in-
version of  first-arrival  and  reflection  traveltimes  (JI-FRRT),  includ-
ing  the  inversion  strategy.  Finally,  we  present  several  numerical
examples to illustrate the performance of  JI-FRRT,  which demon-
strate the potential applications of this methodology to reveal the
internal structure of the earth through modeling seismic velocity.

2.  Theory

2.1  Topography-Flattening Scheme and Topography-
Dependent Eikonal Equation in 2-D

The  topography-flattening  is  achieved  by  transforming  the
Cartesian  coordinate  system  to  a  curvilinear  coordinate  system,
using  grids  conforming  to  the  irregular  surface  to  describe  the
model  (Figure  1).  Such  a  grid  is  called  a  “boundary-conforming
grid”  (Thompson  et  al.,  1985; Hvid,  1994),  and  has  been  used  by
many  researchers  (Fornberg,  1988; Zhang  W  and  Chen  XF,  2006;
Appelo  and  Petersson,  2009; Lan  HQ  and  Zhang  ZJ,  2011a, b,
2013a, b). Under  such  a  transformation,  the  curvilinear  coordin-
ates  (q, r)  in  the  mathematical  space  are  mapped  onto  the
Cartesian  coordinates  (x, z) in  the  physical  space.  Hence,  a  topo-
graphic physical model (x, z) is converted to a flattened mathem-
atical  model  (q, r)  (in  the  mathematical  space)  (Figure  1). Neigh-
boring  elements  in  the  physical  space  are  also  adjacent  in  the
mathematical space. Velocity nodes of the models are given at the
curvilinear  coordinates,  but  transformed  and  expressed  in  the
physical  space  (x, z).  Note  that  the  irregular  surface  should  be
second-order derivable to insure an efficient computation.

Using  the  topography-flattening  method,  the  classical  eikonal
equation expressed in Cartesian coordinates becomes a new gen-
eralized equation in the curvilinear coordinate system, which is to-
pography-dependent (Lan HQ and Zhang ZJ, 2013a, b):

A ·
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∂q
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∂q
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The  “coefficients” A, B and C are  topography-dependent. T is
traveltime, s is  slowness, J is  the  Jacobian  that  is  written  as

 and  denotes ,  and  similar  in  other
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Figure 1.   Irregular surface flattening scheme: transformation between Cartesian coordinates (x, z) and curvilinear coordinates (q, r) based on a

boundary conforming grid.
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The  Lax-Friedrichs  sweeping  scheme,  a  fast-sweeping  method

(hereafter FSM), is applied to solve equation (1) and to obtain the

first-arrival times. We determine the ray paths following the steep-

est traveltime gradient in the curvilinear system from the receiver

to the source (Ma T and Zhang ZJ, 2014). Traveltimes at receivers

and  shots  are  calculated  by  interpolation  to  trace  their  positions

exactly.

2.2  Multistage Scheme for Reflection Tracking
Traditional grid-based  eikonal  schemes  for  computing  travel-

times are usually limited to obtaining first arrivals only (Rawlinson

et  al.,  2004a),  not  excluding  the  topography-dependent  eikonal

equation. A multistage scheme is an efficient method for tracking

later arrivals in layered media, and has been successfully used by

some  researchers  in  combination,  respectively,  with  the  fast-

marching  method  (Rawlinson  and  Sambridge,  2014a,  b)  or  the

shortest-path  method  (Bai  et  al.,  2009,  2010; Huang  GJ  et  al.,

2012). The former has not considered an irregular surface; the lat-

ter  can  handle  the  irregular  problem  but  is  time-consuming.  In

this paper, we try to combine the multistage scheme with a topo-

graphy-dependent eikonal  equation  to  trace  reflected  phase  ex-

actly in an irregular model. The two principal difficulties involved

in introducing a multistage scheme is (1) how to combine it with

first-arrivals’ numerical solution processing (FSM); (2) how to rep-

resent  accurately  the  reflecting  interface,  which  generally  varies

with depth and does not conform to the regular velocity grid.

Faithful  representation  of  the  reflection  interface  was  solved  by

introducing a set of nodes that irregularly lie on the interface and

are  independent  from  the  velocity  grid  nodes.  A  connectivity

between the irregular interface nodes and the regular grid nodes

was constructed by local triangulation in the neighborhood of the

interface; traveltimes at the interface nodes were attained by a lin-

ear interpolation scheme of the triangle with two points in the ve-

locity grid (Figure 2b).

We  adopted  the  multistage  method,  in  combination  with  the

FSM,  for  the  numerical  solution  of  the  TDEE  (called  multistage

FSM), to calculate reflected phases in layered media with an irreg-

ular  surface.  The  multistage  FSM  scheme  involves  four  stages

(Figure  2):  the  first  stage  initializes  FSM  at  the  source  and  tracks

the  incident  wave  front  to  all  points  on  the  reflecting  interface

(Figure  2a);  the  second  stage  records  traveltimes  of  first  arrivals

along the sampled interface,  applying the local triangle linear-in-

terpolation to calculate traveltimes on interface nodes from those

on velocity nodes (Figure 2b);  the third stage tracks the reflected

wave  front  by  reinitializing  FSM  from  the  sampled  interface

(Figure  2c);  the  fourth  stage  tracks  ray  paths  along  the  negative

gradient direction of the obtained traveltime field, from receivers

to the reflector and then to sources (Figure 2d).

Since  the  multistage  FSM  is  established  by  initializing  the  wave

front  from  interfaces,  later  arrivals  that  propagate  in  multiple

layered  media  can  be  correctly  computed  by  following  the

propagating  step.  In  this  paper,  we  solve  the  topography  case

with  an  irregular  surface  on  the  top  simply  by  extending  the

multistage FSM  to  2-D  curvilinear  coordinates  with  a  single  re-

flector.

3.  Tomographic Inversion

3.1  Back-Projection Algorithm

δs

The inversion is carried out by a back-projection algorithm (Hole,

1992),  in  which  the  traveltime  residues  are  uniformly  projected

along ray paths. Thereafter, the slowness perturbation  in each

grid cell can be written as:

δs =
1
K

∑ δtk

lk
,k = 1,2, ...,K, (2)

δtk

here K is the number of rays passing through any of the neighbor-

ing cells,  and lk are respectively the traveltime residue and the

(b)Velocity grid and interface nodes

(c)Reflected wavefront
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Incident wavefront

(d)Complete wavefront and ray tracking
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Figure 2.   (a) Incident wavefront is tracked from source to all points on the reflecting interface; (b) Interface nodes (black circles) are independent

from the velocity grid nodes (gray diamonds), and traveltimes at interface nodes are obtained from those at velocity nodes by a local triangle

linear-interpolation; (c) Reflected wavefront is tracked to receivers on the surface; (d) Ray paths are tracked along the negative gradient direction

of the obtained traveltime field, from receivers to the reflector and then to sources. Source (S) and receivers (R) are denoted by star and triangles,

respectively.
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total  length  of  the k-th ray.  The  slowness  perturbation  is  calcu-
lated in the ray tracing process, which belongs to the forward pro-
cess.  As  the  model  is  parameterized  at  grid  points,  the  slowness
perturbation at each grid point is found by taking the average of
the values obtained from the cells surrounding this grid point. The
inversion grid is a larger grid resampled from the grid used in the
forward  calculation;  a  smoothing  factor  is  introduced  to  spread
the  slowness  perturbation  over  a  wider  area  and  decrease  local
velocity anomalies. An appropriate choice of the resample and the
smoothing factor ensures that the velocity model will be well up-
dated. The velocity model is updated by iteration until the travel-
time residue  is  sufficiently  small  and  does  not  change  signific-
antly with the next iteration.

3.2  Joint Inversion Strategy
The use of first-arrival waves together with reflected waves identi-
fied from  a  deep  seismic  sounding  experiment  requires  joint  in-
version strategies.  For the sake of  simplicity,  in this  article we as-
sume a specified reflector to take care of exploring the seismic ve-
locity  structure  of  the  medium;  in  other  words,  in  the  inversion
process we set the reflection interface and try to obtain an accur-
ate velocity image.

In  the  inversion  process,  a  back-projection  algorithm  is  applied,
respectively, to the first-arrival and the reflection phases, and the
slowness  perturbations  are  calculated  along  each  phases’  paths,
respectively.  We then sum up the two classes of perturbations in
each cell, to update the velocity (slowness) model. The use of the
total slowness perturbation to update the velocity model at each
iterative step allows us to obtain the final velocity model. Figure 3

shows a flow-chart that describes the JI-FRRT process.

In  order  to  avoid  large  perturbations  and  over  fitting  of  noise

when applying  the  inversion  routine  in  the  computational  do-

main, we  first  take  the  smoothing  factor  in  the  horizontal  direc-

tion equaling to nx (the number of nodes in the horizontal  direc-

tion), to keep the velocity fixed in this direction and only updated

in the vertical direction. After an applicable 1-D model is obtained,

we  adjust  the  smoothing  operator  in  both  directions  to  update

the velocity and finally obtain a 2-D model.

4.  Numerical Examples
Below  we  develop  several  numerical  examples  in  order  to  verify

the performance of  JI-FRRT.  First,  we consider  three  models  hav-

ing increasing topographic complexity, and an undulated reflect-

or to prove the accuracy of the traveltime joint inversion proced-

ure. Second, we analyze the quality of the results through the clas-

sical  checkerboard test.  Third,  we also check the efficiency of the

method assuming a model with irregular topography and an un-

dulated reflector, together with an intracrustal high-velocity body.

Lastly, we test the robustness of our working scheme by checking

its noise tolerance. In all tests, the first-arrival and reflection travel-

times at each receiver, i.e., the input data for further seismic mod-

eling, are calculated by forward process of JI-FRRT, by using theor-

etical models those to be inverted.

4.1  Different Topographic Complexities
We consider three topographic models labeled as Models 1, 2 and

3. Model 1 has a trapezoidal hill located in the middle of the mod-

Calculation of first-arrival traveltime and

ray paths (by solving the eikonal equation)

Calculation of reflection traveltime and

ray paths (by solving the eikonal equation)

Calculation of slowness perturbation

for reflection waves

(back-projection algorithm)

Calculation of slowness perturbation

for first-arrival waves

(back-projection algorithm)

End

Total slowness perturbations

Smoothing operation

(digital averaging filering)

 Are traveltime residuals

satisfactory?

Yes

No

Start

Model parameterization

(Boundary-conforming grids)

Velocity Construction

 
Figure 3.   Flow-chart describing the joint tomographic inversion of first-arrival and reflection traveltimes.
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el surface (Figure 4a). Model 2 consists of 4 hills and 3 valleys uni-

formly arranged on its surface (Figure 4b). Model 3 is the one that

has the most complex topographic surface, since it combines hills

and valleys irregularly (Figure 4c). The topographic gradients were

designed to increase gradually from Model 1 to Model 3 with the
aim of testing the reliability and accuracy of JRFTT under different
topographic complexities.  We  made  several  tomographic  inver-
sions using  different  grids,  and  found  that  the  optimal  grid  spa-
cing was 0.5 km in both vertical and horizontal directions. Figure 4
shows the model mesh 100 × 51 (number of grid nodes in the ho-
rizontal and  vertical  directions)  displayed  with  a  density  reduc-
tion  factor  of  3,  which  represents  the  boundary-conforming  grid
for the three models,  with a grid spacing of about 1.5 km. As be-
fore, we fired 10 shots that were recorded by 46 receivers evenly
arranged on the irregular topographic surface. In order to include
a non-flat reflective surface, thereby increasing the complexity of
the initial  model  and  bringing  us  closer  to  a  real  case,  we  intro-
duced  an  undulated  interface  in  the  velocity  field  lying  at  the
depth  range  21–33  km.  Then  we  carried  out  several  inversions
with different re-gridding and moving average factors, and finally
found the optimal factors to be, respectively, (4, 2) and (5, 3) for all
three tests.

We  pick  460  first-arrival  and  460  reflection  traveltimes  to  image
the  model,  which  is  parameterized  by  grids  of  size  (101  ×  51).
Figures. 5a, b, and c show the tomography results for Models 1, 2,
and  3,  respectively.  In  all  plots  the  continuous  line  denotes  the
wavy reflection interface. We can see the theoretical velocity mod-
els (upper  panels),  the initial  models  (middle panels),  and the in-
verted models (lower panels)  obtained by JI-FRRT.  The results re-
construct  the  theoretical  models  with  very  little  error,  even  with
increasing  topography  complexities  and  starting  from  an  initial
model that clearly deviates from the target model.

After obtaining the inversion solutions, we are interested in estim-
ating  the  quality  (accuracy)  of  the  results.  Thus  we  evaluate  the
results  based  on  the  following  criteria.  First,  since  our  working
scheme updates the velocity along the ray paths, we need to dis-
play the ray geometry and the ray coverage density, i.e. the num-
ber  of  rays  that  cross  each  grid  cell.  This  information  is  given  in
Figure 6,  which reveals the illumination of the explored medium.

(a)

(c)

(b)

Model 1

Model 3

Model 2

 
Figure 4.   Three structural models each with irregular free surface of

different complexity: (a) a single centered trapezoidal hill (Model 1);

(b) 4 hills and 3 valleys uniformly conforming the ground surface

(Model 2); (c) two hills combined with two valleys (Model 3). In all

cases the boundary conforming grid is integrated by a mesh with 100

× 50 cells that is displayed with a density reduction factor of 3. Stars

indicate up to ten shots, and the inverted triangles the location of 46

receivers evenly spaced on the irregular surface.
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Figure 5.   P-wave velocity models with the topography of Model 1 (a), Model 2 (b) and Model 3 (c). The top panels are theoretical models, the

middle panels are initial models, and the lower panels are inverted models; the continuous line in each figures denotes the same wavy reflection

interface.
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Second, it  is  necessary to estimate the error made in the calcula-
tion  of  the  solution.  With  respect  to  the  regions  with  denser  ray
coverage (>5 rays passing through each cell), Figure 7 shows the
relative  velocity  error  regarding  the  final  inverted  models  (lower
panels)  and  that  inherent  to  the  initial  models  (upper  panels),
both  compared  to  the  theoretical  models.  As  can  be  seen,  the
former are much smaller than the latter ones, the initial error be-
ing larger than 10% and the final error smaller than 3%, especially
for  the  middle  region  above  the  reflection  interface.  Third,  RMS
traveltime  residues  versus  number  of  iterations  demonstrate  the
rapid convergence of the inversion for each of the three numeric-
al  examples  (Figure  8).  After  about  five  iterations,  the  residues
gradually  stabilize  and  converge  to  approximately  0.004  s  in  all
cases. Both  the  convergence  of  traveltime  residues  and  the  con-
vergence  of  velocity  errors  to  very  small  values  demonstrate  the
consistency of JI-FRRT.

In  order  to  evaluate  the  vertical  and  horizontal  resolution  of  our
inversion  scheme,  we  also  perform  the  checkerboard  test  for
Models 1, 2, and 3. The models are divided artificially into zones of
relatively  high  and  low  velocity  at  a  scale  of  7.5  km  ×  7.5  km,  so
that  velocity  anomalies  described  by  the  formula  0.3  ×  sin(x)  ×
sin(z)  are added alternatively to a common reference velocity for
all  models  (upper  panels  in Figure  9).  The  synthetic  traveltime  is

obtained  from  the  checkerboard  model;  the  common  reference
velocity  is  taken  from  the  initial  model.  In  the  inversion  process,
the rays  are  unevenly  distributed in  the model  due to  the undu-
lated reflector, so the recovered velocity field is closely related to
the weighted ray density. Upper panels in Figure 9 show theoret-
ical checkerboards, while lower panels in Figure 9 are reconstruc-
ted  checkerboards,  which  reproduce  the  target  velocity  values
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Figure 6.   Ray coverage with reference to the model shown in Figure 5, respectively for Model 1 (a), Model 2 (b) and Model 3 (c). The upper

panels are raypaths from the 3rd shot, and the lower panels are number of rays that intersect each cell. Sources (stars) and receivers (triangles) are
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Figure 7.   Relative velocity errors of initial models (the upper panels) and inverted models (the lower panels), all compared to theoretical models
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Figure 8.   RMS traveltime residues vs. number of iterations in relation

to the three prior models (Figures 5a, b, and c).
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Figure 10.   The contrasting results and other relevant outputs of JI-FRTT and first-arrival tomography. From top to bottom: (a) P-wave velocity

distribution depicting the theoretical model, (b) initial model, (c) tomographic image obtained by JI-FRRT, (d) tomographic image obtained by

the first-arrival tomography, (e) number of rays that intersect each grid cell for JI-FRRT, (f) number of rays that intersect each grid cell for first-

arrival tomography, (g) inverted velocity anomaly for JI-FRRT, (h) inverted velocity anomaly for first-arrival tomography.
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quite  well,  particularly  in  zones  where  there  are  a  larger  number
of rays  crossing  the  medium.  This  illustrates  that  our  scheme  in-
deed has high resolution in the vertical and horizontal directions.

4.2  Comparing with First-Arrival Tomography
As the reflection phase is used to probe a deeper area, compared
with  the  first-arrival  tomography  (Ma  T  and  Zhang  ZJ,  2015),  we
conduct a first-arrival tomography to make a comparison with the
muti-phase tomography.  The contrasting results and other relev-
ant outputs are shown in Figures 10a–h. From top to bottom: (a)
P-wave  velocity  distribution  depicting  the  theoretical  model,  (b)
initial  model,  (c)  tomographic  image  obtained  by  JI-FRRT,  (d)
tomographic  image  obtained  by  the  first-arrival  tomography,  (e)
number of rays that intersect each grid cell for JI-FRRT, (f) number
of rays that intersect each grid cell for first-arrival tomography, (g)
inverted velocity anomaly for JI-FRRT, (h) inverted velocity anom-
aly  for  first-arrival  tomography.  Since  the  first-arrival  rays  can
travel  only  in  a  shallow  area  (Figures  10e–f), the  velocity  differ-
ence of  the  first  arrival  result  is  larger  than  that  of  JI-FRRT,  espe-
cially at the deeper area near the reflector (Figures 10g–h).

4.3  High-Velocity Anomaly
To check the efficiency of the method we now take a model based

on  previous  Model  3  that  irregularly  combines  hills  and  valleys

(Figure  4c)  and  has  an  intracrustal  high-velocity  body.  We  add  a

high-velocity anomaly (+ 2 km/s) with size 14 km × 14 km just be-

low the central  valley  of  the  test  structure  (Figure  4c). The inver-

sion result and other relevant outputs are shown in Figures 11a–g.

From top to bottom: (a) P-wave velocity distribution depicting the

theoretical model,  (b)  initial  model,  (c)  tomographic  image  ob-

tained  by  JI-FRRT,  (d)  ray  diagram  from  the  3rd  shot  point,  (e)

number of rays that intersect each grid cell, (f) theoretical velocity

anomaly,  (g)  inverted  velocity  anomaly.  A  slight  focusing  of  the

rays takes place in the anomaly zone (Figure 11e). All these results

illustrate that the velocity anomaly can be reconstructed with suc-

cess using JI-FRRT.

4.4  Noise Tolerance
The  inversion  algorithm  is  known  to  work  well  with  noise-free

data, but this might not be the case with noise-contaminated data
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Figure 11.   Test with a high-velocity body embedded within the model shown in Figure 5c. From top to bottom: (a) P-wave velocity distribution

depicting the theoretical model, (b) initial model, (c) tomographic image obtained by JI-FRRT, (d) ray diagram from the 3rd shot point, (e) number

of rays that intersect each grid cell, (f) theoretical velocity anomaly, (g) inverted velocity anomaly.
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(Zhou B et al., 1992). To determine the response of JI-FRRT to data
contaminated  by  noise,  we  added  random  Gaussian  noise  with
standard  deviation  of σ =  0.2  s  to  the  synthetic  data  computed
from Model 3 (Figure 4c).  The inversion result  and other relevant
outputs are shown in Figures 12a–g. From top to bottom: (a) the-
oretical model, (b) initial model, (c) tomographic model obtained
by JI-FRRT, (d) ray diagram, (e) ray coverage, (f) relative velocity er-
ror inherent to the initial model, (g) relative velocity error regard-
ing the final inverted model. Although the velocity error is a little
larger  than  in  the  noise-free  case  (lower  panel  in Figure  7c),  the
new tomographic image (Figure 12c) fits well to that of the theor-
etical  model  (Figure  12a) and  is  comparable  to  the  image  ob-
tained  before  without  noise  (lower  panel  in Figure  5c). This  fur-
ther supports the robustness of JI-FRRT by demonstrating that our
inversion scheme works well even with noisy data.

5.  Conclusion
We  present  a  tomographic  inversion  method  to  determine  the
seismic velocity structure of a physical domain whose topograph-

ic surface is irregular or non-flat. To deal with this physical feature,

we employ the mathematical tool called irregular surface flatten-

ing, which is based on the use of a boundary conforming grid and

the transformation  between  curvilinear  and  Cartesian  coordin-

ates.  The  method  has  been  designed  to  jointly  invert  first-arrival

and  reflection  traveltimes  (JI-FRRT).  The  fast-sweeping  method

(FSM)  is  applied  to  a  topography-dependent  eikonal  equation

(TDEE) in curvilinear coordinates to obtain first-arrival traveltimes;

the  multistage  scheme  is  introduced  to  combine  with  FSM  to

propagate reflected waves from an interface. The reflection paths

are traced along the negative gradient direction of the traveltime

field from receiver to source. We calculate slowness perturbations

using first-arrival and reflection paths and the back-projection al-

gorithm,  and  then  we  sum  these  results  to  update  the  velocity

model.

Numerical examples  reveal  that  JI-FRRT  performs  well.  Tests  per-

formed with models of increasing topographic complexity and an

undulated reflection interface support the reliability and accuracy
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Figure 12.   Noise tolerance of the inversion scheme. Random Gaussian noise with standard deviation of σ = 0.2 s was added to the synthetic

traveltime data for both first arrivals and reflected waves, for computation with the model shown in Figure 8c. From top to bottom: (a) theoretical

model, (b) initial model, (c) tomographic model obtained by JI-FRRT, (d) ray diagram from the 3rd shot point, (e) ray coverage, (f) relative velocity

error inherent to the initial model, (g) relative velocity error regarding the final inverted model.
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of JI-FRRT  on  the  basis  of  the  final  tomographic  model,  ray  dia-
gram  and  ray  density  coverage,  small  error  in  the  solution,  and
rapid convergence of the computational algorithm. Moreover, the
classical checkerboard  test  also  indicates  that  the  spatial  resolu-
tion of JI-FRRT is quite acceptable. The efficiency of JI-FRRT in de-
tecting a velocity anomaly in the interior of the crust is another at-
tractive feature of the method. Finally, JI-FRRT shows a good noise
tolerance,  which is  an important  issue when one is  working with
field data.

In the near future we hope to apply the inversion scheme to oth-
er later arrival phases and to include the interface inversion in the
scheme, to better apply it to more real travel-time processing.
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