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S U M M A R Y
In full waveform inversion (FWI) with the least-squares (L2) norm, the direct amplitude match-
ing is never perfect and the accurate estimation of the seismic source strength is not always
available. In contrast, the normalized zero-lag cross-correlation objective function relaxes on
the amplitude constraints and emphasizes the phase information when measuring the closeness
between the simulated and observed data. This FWI method becomes insensitive to differences
in amplitude. Based on this property, we investigate the effectiveness and robustness of FWI
with the normalized zero-lag cross-correlation function (CFWI) against the noise and unpre-
dictable amplitude of the data that cannot be modelled by the wavefield extrapolation operator.
The effectiveness is firstly tested by noise-free data and data contaminated by Gaussian white
noise. In addition, CFWI can invert the data set with incorrect source strength when compared
with the L2 norm. Moreover, the data set with incorrect source signature illustrates that CFWI
is slightly more insensitive to the error in source signature than the L2 norm. However, a source
inversion is still needed when the source signature is severely erroneous. With non-Gaussian
noise data, such as contaminated by strong ground motion noise and even by spike-type noise,
CFWI provides a comparable result with that of the robust Huber norm. Numerical experi-
ments with non-Gaussian noise also indicate that CFWI can suppress noise in data to produce
clearer images when compared with the Huber norm. Besides, CFWI is free of the threshold
criterion that controls the transition between the L2 and L1 norms used with the Huber and
Hybrid norms and therefore free from tedious trial-and-error tests. Several numerical examples
support that CFWI is an alternative and reliable inversion method. However, a numerical test
with a 1-D initial model confirms that CFWI is more sensitive to the cycle-skipping problem
caused by less-accurate initial velocity model than the L2 norm, which is due to the wrong
matched events contributing to spurious local minima of the objective function of CFWI, but
to an increase in the objective function used with the L2 norm.
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1 I N T RO D U C T I O N

Seismic waveform tomography or full waveform inversion (FWI)
utilizes the full waveform as the data to be fitted by implement-
ing the adjoint-state methods (Lailly 1983; Tarantola 1984; Tromp
et al. 2005; Liu & Tromp 2006, 2008; Plessix 2006; Chen et al.
2007; Tape et al. 2009; Liu & Gu 2012). FWI minimizes an ob-
jective function that is defined as the difference between the simu-
lated and observed data. It updates the target velocity model itera-
tively, starting from an appropriate initial model, and eventually en-
ables to extract high-resolution information on the properties of the
medium from complete wavefield records. FWI provides not only a

high-resolution geometric picture of the target structures but also
quantitative inference of the physical properties (e.g. velocity, den-
sity, or/and impedance, etc.) of the subsurface (Mora 1987; Pratt
1990; Pratt & Goulty 1991; Pratt et al. 1996, 1998; Operto et al.
2007; Wang & Rao 2009). However, despite its great potential, FWI
suffers from drawbacks such as non-linearity and ill-posed inversion
problem, besides its high computational cost (Wang & Rao 2006).

Mathematically, FWI is a non-linear optimization problem. Al-
though the global optimization methods, such as the Monte Carlo-
based inversion methods (Rothman 1985; Kvoren et al. 1991;
Mosegaard & Tarantola 1995), tend to search for a global opti-
mal solution, the expensive cost required for its convergence makes
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these methods beyond ordinary computational capabilities. In prac-
tice, the local optimization methods represent a feasible way to
deal with this issue. The presence of cycle-skipping associated
with the high-frequency waveforms, the sinusoidal nature of the
seismic wavefields and the complexity of the earth reflectivity are
responsible for spurious local minima (Sirgue & Pratt 2004; Plessix
et al. 2010; ten Kroode et al. 2013). A successful inversion per-
formed with the help of gradient-based FWI requires that the misfit
function produced by an initial velocity model is located within
the basin of attraction of the global minima of the objective func-
tion. Generally, both the width of this basin of attraction and the
length of the half-cycle increase at low frequencies and large offsets
(Sirgue & Pratt 2004). Unfortunately, sufficiently low frequencies as
well as large enough offsets are not available from real data. Some
efforts have been undertaken to overcome this problem, such as
multiscale strategy (Bunks et al. 1995; Ravaut et al. 2004; Fichtner
et al. 2008, 2013; Liu et al. 2017), early arrival waveform method
(Sheng et al. 2006), exponential time-damping scheme (Brenders
et al. 2009), time or/and offset window method (Kurzmann 2012;
Shipp & Singh 2002), and Laplace-domain FWI (Shin & Cha 2008;
Shin & Ha 2008). A reliable choice is the combination of FWI
with traveltime tomography, so that the output model provided by
tomography is then used as the input model for FWI. Although this
procedure is robust, it requires an arduous task of seismic phase
identification and tedious traveltime picking.

In the context of FWI, the topology in the solution space is closely
related to the adopted objective function (Fichtner 2010; Bulcão
et al. 2013; Jimenez Tejero et al. 2014). Because different parts of
seismic data (such as traveltime, amplitude, phase, etc.) have differ-
ent sensitivity to the inversion, they have different behaviour (Wang
& Pratt 1997). In particular, some objective functions may give rise
to good performance and at the same time to be robust, what is
really necessary especially for noisy data. Many objective functions
have been proposed to date. Luo & Schuster (1991) constructed the
cross-correlation traveltimes between the simulated and observed
waveforms to obtain an objective function with more linear be-
haviour with respect to the velocity model. Although this objective
function is insensitive to cycle-skipping problems, it is sensitive to
the differences in amplitude spectra and does not allow addressing
multi-arrival problems easily (Hörmann & de Hoop 2002; de Hoop
& van der Hilst 2005). Later, van Leeuwen & Mulder (2010) used
a weighted norm of the cross-correlation that is insensitive to the
differences in amplitude spectra. Also, a dynamic image warping
method of seismic images was proposed to handle multi-arrivals
data (Hale 2013). In an attempt to evolve towards the exploitation
of the full wavefield, Fichtner et al. (2008) and Bozdag et al. (2011)
proposed misfit functions based on both the phase and amplitude
attributes. FWI based on envelope objective function has been also
proposed to mitigate the absence of low frequency data because the
envelope of seismic data contains abundant low frequency informa-
tion (Chi et al. 2014; Wu et al. 2014; Luo & Wu 2015). Usually,
waveform inversion through the phase approach tends to make the
misfit function be more linear (Kim & Shin 2005; Shin & Min
2006; Bednar et al. 2007). On this issue, Alkhalifah & Choi (2014)
proposed an unwrapped phase estimation method that is easy to use
and quantify. Compared to the conventional phase representation,
the unwrapped phase estimation helps to reduce the non-linearity
of the inversion.

In practice, data is always contaminated by stochastic or/and
coherent noise, which further aggravates the non-linearity and diffi-
culty of FWI (Wang & Rao 2006). Since the direct amplitude match-
ing of the least-squares (L2) norm is never perfect, it is desirable an

objective function with robust performance to deal with this kind of
data. To address this problem, some authors have proposed several
objective functions (Djikpéssé & Tarantola 1999; Guitton & Symes
2003; Brossier et al. 2009, 2010; Ha et al. 2009; Pyun et al. 2009;
Bulcão et al. 2013; Jimenez Tejero et al. 2014). The Huber function
(Huber 1973) is highlighted as the most robust norm among all of
them. The L2 norm is always highly sensitive to non-Gaussian noise
facing the reconstruction of models. The least-absolute-value (L1)
norm shows a more robust behaviour whatever the noise charac-
teristics, which allows the convergence towards admissible models
(Brossier et al. 2009). Although the L1 norm is more robust to noise
than the L2 norm, the gradient of the L1 norm presents a singularity
when the residuals vanish. Then the Huber function adopts the L1
norm when residuals are large and the L2 norm when residuals are
small, thus overcoming such singularity problem. The robustness
of FWI with the Huber norm has been verified by Guitton & Symes
(2003) and Ha et al. (2009). The study carried out by Brossier et al.
(2010) proved that the L1 norm provides the most reliable mod-
els even with strongly decimated data sets, while the L2 norm can
provide reliable results in the presence of uniform white noise. Al-
though the Huber and Hybrid norms (Bube & Langan 1997) allow
obtaining models when working with noisy data, both norms are
sensitive to a threshold criterion (Brossier et al. 2010) that controls
the transition between the L1 and L2 norms. Tedious trial-and-error
tests are required for reliable estimation with the Huber and Hybrid
norms (Brossier et al. 2010).

To overcome the problem of the imperfect amplitude matching in
real circumstance, in this study, we adopt the normalized zero-lag
cross-correlation objective function for FWI. Routh et al. (2011a,b)
and Choi & Alkhalifah (2012) suggested this objective function for
the application of encoded multisource full waveform inversion to
adapt to non-fixed marine streamer data. Also, it has also been used
in least-squares reverse time migration (Zhang et al. 2013, 2015),
revealing itself as a stable and practical method. Dutta et al. (2014)
proved that this objective function is also an alternative solution
to visco-acoustic least-squares migration when there is strong at-
tenuation in the subsurface and the estimation of the attenuation
parameter is insufficiently accurate (Dutta et al. 2014). Given that
this function maximizes the minus value of the normalized zero-lag
cross-correlation rather than differences in amplitude, it relaxes on
the amplitude matching and uses the phase information to measure
the closeness between the simulated and observed seismic data, so
that the differences in amplitude contribute less than the differences
in phase (Zhang et al. 2015). In the best scenario, in which the
two data sets are identical or with a constant scaling difference,
the objective function reaches its minimum −1. In practice, the
source strength always varies from one to another source and its
accurate estimation is difficult. Now, since the normalized zero-lag
cross-correlation objective function is insensitive to the differences
in source strength facing the simulated and observed data, it is free
of the estimation of source strength.

Although the normalized zero-lag cross-correlation function for
FWI has been used before, its robustness to non-Gaussian noise, in-
sensitivity to source signature, and sensitivity to the cycle-skipping
problem, never have been systematically investigated to date. In this
study, we investigate the behaviour of FWI with this function with
respect to these issues using a 2-D canonical model. Then, we sys-
tematically investigate the effectiveness and robustness of FWI with
this function using both noise-free data and Gaussian white noise
data. We also study the problem raised by differences in amplitude
of the data as a consequence of the variable seismic source strength.
We use noise-free data generated by incorrect source wavelet to test
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its sensitivity to source signature. In order to check the robustness
and stability of the process, we compare it with the L2 norm and
Huber norm for inversion using non-Gaussian noise data. We also
consider a 1-D model to verify the sensitivity of FWI with this
function to cycle-skipping caused by less-accurate initial model.

2 N O R M A L I Z E D Z E RO - L A G
C RO S S - C O R R E L AT I O N - B A S E D F U L L
WAV E F O R M I N V E R S I O N

Essentially, FWI aims to find a velocity model that allows us to
interpret the available data correctly. This process is carried out by
calculating synthetic seismic records from a previously assumed
model with the purpose of comparing with the observed data. If
the fit is not acceptable, the model is updated so that the synthetic
data are regenerated, and the procedure is repeated until the con-
vergence is achieved. It is a powerful technique in seeking images
and properties (such as velocity and impedance) of complex geo-
logical structures. The important criterion to measure the error be-
tween the simulated (or predicted) and observed data is an objective
function.

The standard implementation of FWI relies on the use of the L2
norm as the objective function that expresses the difference between
the simulated and observed data. The L2 norm strongly emphasizes
the matching of the amplitudes between the simulated and observed
data. However, with real data, it is not easy to match the amplitudes
directly because of several factors. First, the real earth is viscoelastic
so that the amplitudes and phases of the propagating seismic waves
are severely distorted (Dutta et al. 2014). As a result, the resolution
of the inverted models decreases (Causse et al. 1999). Although
viscoelastic simulations can mitigate this issue, it is computationally
expensive. In addition, the estimation of the attenuation parameter
is really difficult. Second, it is difficult to obtain a good estimation
of the source signature and indeed the source strength varies at
different shot locations.

Here, we consider full waveform inversion with the normalized
zero-lag cross-correlation function (i.e. correlative full waveform
inversion, hereafter CFWI). This function can be written as

E (c)=− 1

Ns Nr

∑
s

∑
r

∫
d (xr ; t ; xs ; c) · D (xr ; t ; xs) dt√∫

d(xr ; t ; xs ; c)2 dt
√∫

D(xr ; t ; xs)2 dt
,

(1)

where c is the velocity model; Ns and Nr represent the number of
shots and receivers, respectively; d(xr ; t ; xs ; c) and D(xr ; t ; xs) are
the simulated and observed data at the receiver xr and the time in-
stant t, respectively, which are excited by a source located at position
xs . The summation is performed over sources (subscript s) and re-
ceivers (subscript r). The negative sign on the right-hand side means
that the minus value of the normalized zero-lag cross-correlation
function is minimized or the normalized zero-lag cross-correlation
function itself is maximized. Since this function measures the sim-
ilarity between the simulated and observed data, it relaxes on the
amplitude adjustment criterion required by the L2 norm and em-
phasizes the phase-mismatch. This objective function is equivalent
to a time-domain phase inversion method where the phase spectra
of the simulated data are matched with those of the observed data
(Schuster 1991; Sun & Schuster 1993; Routh et al. 2011a,b; Zhang
et al. 2013; Dutta et al. 2014). Thus, it reduces the importance of the
amplitude and provides the basis for using the phase information to
measure the closeness between the observed and simulated seismic
data. Therefore, it encloses high expectations to be insensitive to

noise and unpredicted data that cannot be modelled by the wavefield
extrapolation operator.

After defining the objective function, the core part of the gradient-
based FWI algorithm that enables us to solve the non-linear opti-
mization problem (1) is the computation of the gradient function.
Because a change of the objective function only changes the adjoint
source but not the whole gradient expression, CFWI has formally
the same gradient expression as for the L2 norm (Crase et al. 1990).
In the context of the adjoint-state method and acoustic media, the
gradient of the objective function (1) with respect to the veloc-
ity model c is calculated by the zero-lag cross-correlation between
forward-propagated wavefields and backward-projected wavefield
residuals (Tarantola 1984; Boonyasiriwat et al. 2009)

g (x) = 2

c (x)

∑
s

∫
∂2

∂t2
p (x; t ; xs) · q (x; t ; xs) dt, (2)

where the adjoint wavefield q(x; t ; xs) is generated by back-
propagating the following residuals,

�d = 1√∫
D2 dt

√∫
d2 dt

(∫
d · D dt∫

d2 dt
d − D

)
, (3)

where d denotes the simulated data and D the observed data. Here,∫
d·D dt∫
d2 dt

d represents the rescaled simulated data used to correct the

amplitude differences between the observed and simulated data.
The weight before the square brackets aims to remove the ampli-
tude strength effects derived from the observed and simulated data.
For this reason, CFWI is free from an accurate estimation of the
source strength since the differences in amplitude between the ob-
served and simulated seismic data are normalized by the reweighted
residuals (3). It can be seen that the computation of the gradient (2)
involves twice wavefield extrapolation. In this study, we adopt a
central finite-difference stencil of the 16th-order accuracy in space
and the second-order accuracy in time to extrapolate the source
wavefield and the receiver wavefield. We solve the second-order
acoustic wave equation considering perfectly matched layers as ab-
sorbing boundary conditions (Liu et al. 2012) to suppress spurious
reflections from the four artificial boundaries.

Once the gradient is formulated, we need to select a practical
inversion method to solve the non-linear optimization problem (1).
Although some global optimization methods based on a random
sampling of the model-space can be theoretically feasible, these
methods generally require many expensive evaluations of the mis-
fit function for each new model (Rothman 1985; Kvoren et al.
1991; Guitton 2012), which is a long and costly process. In prac-
tice, the local optimization methods are usually preferred in terms
of computational efficiency although they are inherently limited to
local convergence and cannot guarantee a global solution, unless
the misfit produced by an initial velocity model locates within the
basin of attraction of the global minima of the objective function
(Pratt et al. 1998). For this reason, we adopt the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method as our in-
version method (Nocedal 1980), such as Liu et al. (2017) have
applied recently. The step-length for implementation is calculated
by the parabolic searching method (Vigh et al. 2009), such as Liu
et al. (2017) have applied recently.

In order to measure the accuracy (error) of the inverted results,
we use the following mean absolute percentage error (MAPE)

ε = 100

N

∑∣∣∣∣ ctrue − cinv

ctrue

∣∣∣∣ , (4)
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where N is the total number of grids of the discretized model, and ||
represents the absolute operator. The smaller the MAPE, the more
accurate the inverted result. In the next sections, we investigate the
effectiveness, sensitivity and robustness of CFWI.

3 B E H AV I O U R S O F T H E L 2 N O R M A N D
T H E N O R M A L I Z E D Z E RO - L A G
C RO S S - C O R R E L AT I O N F U N C T I O N

In order to test the behaviours of the objective functionals such as
the L2 norm and the normalized zero-lag cross-correlation function
in seismic waveform inversion (Jimenez Tejero et al. 2014), we
consider a 2-D canonical model as shown in Fig. 1 to investigate
their respective sensitivities to cycle-skipping, source signature and
noise. The discretized model consists of 301 × 101 grid-cells in
both horizontal and vertical directions. Both the horizontal and
vertical grid spacing is 5 m. We adopted a fixed-spread geometry
with 16 sources and 301 receivers evenly located on surface. The
seismic source is modelled by a Ricker wavelet whose dominant
frequency is 15 Hz. The real velocity model is a medium with a
1-D background velocity gradient, in which the velocity increases
vertically from 1.5 km s−1 at the surface to 4.5 km s−1 at the bottom,
together with a buried spherical-shaped body (circle in the plane)
with a radius of 0.1 km and seismic velocity of v0 = 5.0 km s−1

(Fig. 1). A certain number of initial velocity models are generated
and inverted at once to investigate the sensitivity of FWI with the
L2 norm and the normalized zero-lag cross-correlation function to
the above mentioned three factors. In all these artificially generated
initial velocity models, the background velocity is controlled by two
parameters: its value v0 assigned to the spherical-shaped body and
the value v2 at the bottom. In addition, the value v1 at the surface is
fixed to 1.5 km s−1. These initial velocity models are constructed in
the following manner: v2 varies widely from 1.5 to 7.5 km s−1 with
velocity interval of 0.1 km s−1, while the value v0 assigned to the
buried body varies from 2.0 to 7.0 km s−1 with the same velocity
interval.

In this numerical experiment, we consider three data sets: noise-
free data simulated by the true source wavelet, noise-free data sim-
ulated by a severely incorrect source wavelet, and noisy data. Fig. 2
shows the true source wavelet and two incorrect source wavelets (la-
belled I and II in the illustration) in time-domain (a) and frequency-
domain (b). The first incorrect source wavelet presents large side
lobes and deviates far from the true source wavelet, while the second
incorrect source wavelet is closer to the true source wavelet with the

Figure 1. A 2-D canonical model integrated by a medium where the velocity
increases vertically from 1.5 km s−1 at surface to 4.5 km s−1 at the bottom,
and a buried spherical-shaped body (circular in the plane) that has a radius
of 0.15 km and seismic velocity v0 = 5.0 km s−1. On top, the cross denotes
the first shot point, while the triangle denotes a receiver.

Figure 2. Source wavelets in time-domain (a) and frequency domain (b).
The solid black lines represent the true wavelet, while the solid and dashed
grey lines represent the two incorrect source wavelets, respectively.

exception of two smaller side lobes. In this experiment, we adopt
the first incorrect source wavelet. The noisy data (the third data set)
are generated by adding Gaussian white noise to the noise-free data
to obtain a signal-to-noise ratio (SNR) of 20 dB, and then some
seismic traces are rescaled by a factor 20 to simulate non-Gaussian
noise.

Fig. 3 shows the misfit function values obtained with the L2
norm (top) and the normalized zero-lag cross-correlation function
(bottom): panels (a) and (b) show these values with the noise-free
data simulated by the true source wavelet; panels (c) and (d) show
these values with the noise-free data simulated by the first incor-
rect source wavelet shown in Fig. 2; and panels (e) and (f) show
these values with the non-Gaussian noise data. In the three cases,
it can be seen that the two objective functions are really sensitive
to the velocity value v2 at the bottom of the model (vertical axes)
and insensitive to the velocity value v0 assigned to the spherical-
shaped body (horizontal axes). For the noise-free data simulated
by the first incorrect source wavelet, the global minimum given by
the L2 norm (marked by a white circle in Fig. 3c) becomes nar-
rower than that obtained from the noise-free data simulated with
true source wavelet (Fig. 3a), while the normalized zero-lag cross-
correlation function suffers a less impact (Fig. 3d) although a higher
sensitivity to the value v0. For the noisy data (Fig. 2e), the width
of the global minimum using the L2 norm is quite similar to that
of the minimum obtained from the noise-free data (Fig. 3a). In
contrast, the normalized zero-lag cross-correlation function seems
to be less sensitive to non-Gaussian noise (Fig. 3f) and always
has a narrower global minimum, issue on which we will return in
Section 4.5.

This can be seen with clarity in Fig. 4 where for each individ-
ual experiment we have extracted two curves from Fig. 3 when
the velocity values for the spherical-shaped body are v0 = 3.5
km s−1 (solid black lines) and v0 = 5.0 km s−1 (dashed grey lines),
respectively. In all cases, it can be observed that the width of
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Figure 3. Values of the misfit function (E) depending on a series of initial velocity models, all of them with the geometry of the model shown in Fig. 1, and
characterized by a vertically varying background velocity, from 1.5 km s−1 at surface to 7.5 km s−1 at the bottom (vertical axis), together with an embedded
spherical-shaped body in which the velocity varies from 2.0 to 7.0 km s−1 (horizontal axis). Panels (a) and (b) represent the misfit functions obtained with the
L2 norm and the normalized zero-lag cross-correlation function from noise-free data simulated by the true source wavelet, respectively. Panels (c) and (d) show
these same functions computed with noise-free data simulated by the incorrect source wavelet I (shown in Fig. 2). Panels (e) and (f) show these same functions
computed with data contaminated by non-Gaussian noise. The dashed white lines represent two cuts for velocity values v0 = 3.5 km s−1 and v0 = 5.0 km s−1

of the spherical body. The white circles represent the global minimum.

Figure 4. Curves extracted from the panels shown in Fig. 3 by following the dashed white lines corresponding to the velocity value v0 = 3.5 (solid black lines)
and v0 = 5.0 (dashed grey lines) km s−1 of the spherical-shaped body, respectively. Panels (a) and (b) show the value of the misfit functions (E) calculated with
the L2 norm (top) and the normalized zero-lag cross-correlation function (bottom), respectively, from noise-free data simulated by the true source wavelet.
Panels (c) and (d) show the same functions computed for noise-free data simulated by the incorrect source wavelet I (shown in Fig. 2), respectively. Panels (e)
and (f) show such functions for non-Gaussian noise data, respectively.
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Figure 5. The observed (solid black line) and predicted data (dashed grey
line) excited by the first shot shown in Fig. 1 and recorded at the receiver
(the triangle). The head, diffracted and direct waves are indicated.

the basin of attraction of the global minimum obtained with the
normalized zero-lag cross-correlation function is significantly nar-
rower than that the width obtained with the L2 norm. For the noise-
free data simulated by the first incorrect source wavelet, the L2
norm gives a local maximum at about the point v2 = 6.0 km s−1

(Fig. 4c), which decreases the width of the basin of attraction
of the global minimum. For the noisy data, the L2 norm has a
potential local minimum (an inflection point) at about the point
v2 = 2.8 km s−1 (Fig. 4e). Unlike the L2 norm, the misfit func-
tion value deduced with the normalized zero-lag cross-correlation
function always has a global minimum within a narrower attraction
basin and exhibits a spurious local minimum at about the point
v2 = 2.9 km s−1 that does not appear with the L2 norm (Figs 4b, d,
and f).

In order to find out the reason for this local minimum, in Fig. 5
we plotted the observed and predicted data on surface at distance
of 1.25 km (the inverted triangle in Fig. 1) far from the first shot
point (the cross in Fig. 1). Obviously, the predicted head wave
does not match with the observed head wave but wrongly match
with the observed diffracted wave produced by the buried body,
which leads to the predicted data generated by this initial model (at
about the point v2 = 2.9 km s−1) to suffer a cycle-skipping problem
(i.e. the starting model generates predicted data that differ from
the observed data by more than half a cycle). As the L2 norm
mainly measures the amplitude mismatch, this amplitude differ-
ence leads to an increase in the L2 norm objective function. In
contrast, the normalized zero-lag cross-correlation emphasizes the
phase-mismatch, so that the two upward peaks (calculated head
wave and observed diffracted wave in Fig. 5) produce an increase
in the normalized zero-lag cross-correlation coefficient, that is a
decrease in the objective function (in the minus value of the nor-
malized zero-lag cross-correlation coefficient). This confirms that
the normalized zero-lag cross-correlation function seems to be more
sensitive to the cycle-skipping problem caused by less-accurate ini-
tial model. This issue will be further discussed later in Section 5.
As pointed by Warner & Guasch (2016), such a cycle-skipped
model represents a spurious local minimum of the conventional
FWI objective function, so that a perturbation of the model in
any direction will worsen the fit to the observed data even it may
improve the fit to the true model. Therefore, the cycle-skipping
problem increases the chance of CFWI convergence to local
minima.

4 E F F E C T I V E N E S S A N D RO B U S T N E S S
O F C F W I

4.1 Test with noise-free data

To investigate the effectiveness of CFWI, we use the Marmousi ve-
locity model, which is shown in Fig. 6(a) together with two initial
models: one is a realistic initial model obtained by the first-arrival
traveltime tomography based on the adjoint-state method (Leung
& Qian 2006; Taillandier et al. 2009; Huang & Belleeur 2012;
Bretaudeau et al. 2014; Daniel Köhn, personal communication,
2016), which is taken as our initial velocity model A (Fig. 6b); the
other is a velocity model named B (Fig. 6c) that can generate pre-
dicted data being free from the cycle-skipping problem (discussed in
Section 5). This latter is a 1-D model whose profile along the z-axis
is shown on the right-hand side of the Fig. 6(c). In this 1-D model,
the topmost 0.22 km consist of a water column that has a velocity
value of 1.5 km s−1 (typical velocity of water layers), which over-
lies other layers whose respective velocities range from 1.5 to 4.5
km s−1 (this last model will be used in Section 5). The MAPEs in
relation to both the initial models A and B are 8.74 and 9.85 per cent,
respectively. The true model consists of 500 × 174 grid-cells in the
horizontal and vertical directions, respectively. Both the horizontal
and vertical grid spacing is 10 m. The synthetic data used as com-
mon shot gathers come from 34 shots separated by an interval of
0.15 km and are used as common shot gathers. The seismic source is
located at the depth of 0.05 km and is modelled by a Ricker wavelet
with dominant frequency of 22 Hz. Up to 500 seismic receivers are
evenly deployed on surface with fixed-spread acquisition geometry.
The sampling interval is 0.5 ms and the recording length is 3.6 s.

We use the multiscale strategy (Boonyasiriwat et al. 2009; Wang
2011; Liu et al. 2017) to invert the shot gathers obtained from
the Marmousi model. With this strategy, seismic data and Ricker
wavelet are decomposed into two frequency bands with the help of a
Wiener low-pass filter (Boonyasiriwat et al. 2009), namely: [3.1 Hz,
10.6 Hz], and [10.6 Hz, 36.0 Hz]. In all experiments, we apply
successively these two frequency bands and the true source wavelet
to FWI, unless otherwise noted. Identical stopping criteria are set
for FWI with different objective functions: the relative change in
the value of the objective function value must be less than 0.0001.

Firstly, we utilize FWI with the L2 norm and the normalized
zero-lag cross-correlation function to invert the synthetic data gen-
erated with the Marmousi model reproduced in Fig. 6(a). The initial
velocity model is the one shown in Fig. 6(b). Fig. 7 shows the com-
mon shot gathers for the 17th shot fired at the middle of the model
(Fig. 6a), either noise-free (Fig. 7a) or with Gaussian white noise
and SNR of 20 dB (Fig. 7b). Fig. 8 shows the multiscale images
obtained using the noise-free data (Fig. 7a) and two different objec-
tive functions. The left-hand column are the results obtained by the
conventional L2 norm at the two frequency bands indicated above
(from low to high frequency bands, a and b), while the right-hand
column are the results obtained by the normalized zero-lag cross-
correlation function at the same two frequency bands (from low to
high frequency bands, c and d). By comparing the results at each
scale, we can see that both functionals reconstruct the Marmousi
model quite well.

The MAPEs related to the inverted results represented in Figs 8(b)
and (d) are 4.52 and 3.76 per cent, respectively. Compared with the
MAPE related to the initial model A (8.74 per cent), the MAPEs
associated with the inverted results reveal a significant decrease
that demonstrates the effectiveness of FWI with the normalized
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Figure 6. The Marmousi model. (a) Real velocity model. (b) A model obtained by the first-arrival traveltime tomography based on the adjoint-state method,
which is labelled as initial velocity model A. (c) Initial velocity model B, which is defined as a 1-D velocity model whose profile is shown on the right-hand side.
A 0.22-km-thick water layer with the same speed value of 1.5 km s−1 (typical velocity of water layers) overlies other layers at deeper depths whose velocity
values range from 1.5 to 4.5 km s−1 along the depth z-axis and remain invariable laterally along the horizontal x-axis. The crosses indicate the positions of first
and 17th shot points, while the triangle marks the position of the last receiver.

Figure 7. Common shot gathers of the 17th shot generated from the Marmousi model, without and with Gaussian white noise: (a) noise-free data; (b) data
contaminated by Gaussian white noise with signal-to-noise ratio (SNR) of 20 dB.

zero-lag cross-correlation function. Furthermore, the normalized
zero-lag cross-correlation function (MAPE of 3.76 per cent) pro-
vides a slightly more accurate result than the L2 norm (MAPE of
4.52 per cent) for this noise-free data.

4.2 Sensitivity of CFWI to Gaussian white noise

Taking advantage of the previously synthetized shot gathers from
the Marmousi model reproduced in Fig. 6(a), we now use these shot
gathers contaminated by Gaussian white noise being SNR equal to
20 dB. Fig. 7(b) shows the records contaminated by Gaussian white
noise for the 17th shot. We invert these shot gathers with the initial

velocity model A and and applying the multiscale strategy. The two
frequency bands here considered are the previously listed in Sec-
tion 4.1, that is the frequency bands [3.1 Hz, 10.6 Hz], and [10.6 Hz,
36.0 Hz]. The inverted results obtained with the data contaminated
by Gaussian white noise (Fig. 7b) and the two frequency bands are
shown in Fig. 9. The left-hand column shows the multiscale images
obtained by the conventional L2 norm (from low to high frequency
bands, a and b), while the right-hand column shows the results ob-
tained by the normalized zero-lag cross-correlation function at the
same two frequency bands (from low to high frequency bands, c
and d). Like with the noise-free data, both norms again reconstruct
the Marmousi model reasonably well.
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Figure 8. Multiscale images obtained using noise-free data (Fig. 7a) and two different objective functions. The initial model is shown in Fig. 6(b). The left-hand
column are the results obtained by the conventional L2 norm at two frequency bands (from low to high frequency bands, a and b), while the right-hand column
are the results obtained with the normalized zero-lag cross-correlation function at the same frequency bands (from low to high frequency bands, c and d).

Figure 9. Same as in Fig. 8, using the Gaussian white noise data (Fig. 7b).

The MAPEs related to the inverted results shown in Figs 9(b)
and (d) are 5.06 and 4.47 per cent, respectively, which are sig-
nificantly smaller than the MAPE related to the initial model
A (8.74 per cent). This proves that both the L2 norm and the
normalized zero-lag cross-correlation function are computation-
ally robust with respect to the data contaminated by Gaussian
white noise. This conclusion is consistent with the results pre-
sented by Brossier et al. (2010). Again the normalized zero-lag
cross-correlation function provides a slightly more accurate result
(MAPE of 4.47 per cent) than the L2 norm (MAPE of 5.06 per
cent) for Gaussian noise data. However, the results obtained with
the Gaussian white noise data (Fig. 9) generally have lower reso-
lution when compared to those obtained with the noise-free data
(Fig. 8).

4.3 Sensitivity of CFWI to source strength

As stated above, the normalized zero-lag cross-correlation function
is free from an accurate estimation of the source strength because it
normalizes the differences in amplitude between the observed and
calculated seismic data. For comparison purpose, the shot gathers
generated with the Marmousi model (Fig. 7a) are now arbitrar-
ily rescaled to produce new synthetic records simulating differ-
ent source strengths for each of the 34 shots, although the source
strength is identical for the simulated data of all shots. The scalars
used for this rescaling operation vary from ∼103 to 105 for each
shot, as listed in Fig. 10. We invert these shot gathers with the
initial velocity model A (Fig. 6b) and applying the multiscale strat-
egy. The two frequency bands considered for this strategy are those
mentioned above. Similarly, both the noise-free data and Gaussian
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Figure 10. Scalars that were used to arbitrarily rescale 34 shot gathers
synthetized from the Marmousi model.

Figure 11. Multiscale images obtained using arbitrarily rescaled data (by
applying the scalars indicated in Fig. 10) and the normalized zero-lag cross-
correlation function. The initial model is shown in Fig. 6(b). Panel (a) is the
result obtained with the rescaled noise-free data (reference Fig. 7a). Panel (b)
is the result obtained with the rescaled data contaminated by Gaussian white
noise with low signal-to-noise ratio (SNR) of 20 dB (reference Fig. 7b).

white noise data are considered again to carry out this numerical
experiment.

As expected, FWI with the conventional L2 norm fails to invert
this rescaled shot gathers without appropriate data pre-processing
(the results are not shown), while FWI with the normalized zero-lag
cross-correlation function is able to invert this rescaled shot gath-
ers directly. Fig. 11(a) shows the result obtained by CFWI for the
rescaled noise-free data (Fig. 9a), while Fig. 11(b) shows the result
with the rescaled data contaminated by Gaussian white noise. The
MAPEs related to both results are 4.45 and 4.62 per cent, respec-
tively. After comparing Fig. 11(a) with Fig. 8(d), it is confirmed that
CFWI is insensitive to the variation in the source strength, that is to
differences in source strength between the observed and simulated
data. When compared Fig. 11(b) with Fig. 9(d), it can be concluded
that CFWI is still robust handling data contaminated by Gaussian
white noise even in the case of variable source strength.

4.4 Sensitivity of CFWI to source signature

In the previous section, we have operated with the true source
wavelet and have seen that CFWI is insensitive to the source
strength. In this section, we go beyond and investigate the

sensitivity of CFWI to the error in source signature. We use the
Marmousi model (Fig. 6a) to synthesize two data sets named I
and II with the two incorrect source wavelets shown in Fig. 2
(incorrect wavelets I and II), respectively. First, we invert these
two data sets with the initial velocity model A and the data set
I. The two frequency bands here considered are the previously
listed in Section 4.1. The final inverted results are shown in
Fig. 12. The left-hand column allows seeing the results obtained
with the L2 norm, while the right-hand column allows seeing the re-
sults obtained with the normalized zero-lag cross-correlation func-
tion. The inverted results with the data set I simulated by the first
incorrect source wavelet are shown in Figs 12(a) and (b). As the
incorrect source wavelet I presents large side lobes and deviates
clearly from the true wavelet, the inverted results obtained by the
L2 norm (Fig. 12a) are now cycle skipped because the spurious
wavelet acts to cause some arrivals to become incorrectly aligned
between the observed and predicted data, despite the starting model
is accurate. In contrast, CFWI inverts the basically outline of the
faults in the Marmousi model (Fig. 12b). The MAPEs related to
the inverted results represented in Figs 12(a) and (b) are 18.17 and
9.78 per cent, respectively, which further confirms that the inverted
results obtained by CFWI are more accurate.

Then, the data set II simulated by the incorrect source wavelet
II is also inverted. The results are shown in Figs 12(c) and (d).
Despite this second incorrect wavelet is quite approximate to the
true source wavelet except for smaller lobes, FWI with the L2
norm still converges to a local minimum. Unlike FWI with the
L2 norm, CFWI can successfully invert the Marmousi model al-
though with low resolution. The MAPEs related to the inverted
results represented in Figs 12(c) and (d) are 8.54 and 5.87 per
cent, respectively. Comparing the left-hand column to the right-
hand column, it can be concluded that CFWI is more insensitive
to the error in source signature. This can be attributed to the re-
laxation of the normalized zero-lag cross-correlation on amplitude
matching.

Finally, a source estimation procedure (Groos et al. 2014) is also
adopted at each iteration of FWI with the data set I simulated by the
first incorrect source wavelet. In fact, this source estimation is about
a Wiener deconvolution and at this point we recommend the readers
going to the paper of Groos et al. (2014) for details. The results
obtained by inversion with the data set I and the source estimation are
shown in Figs 12(e) and (f). As can be seen these results yield well
reconstructed structures with high resolution. The MAPEs related
to the inverted results represented in Figs 12(e) and (f) are 3.71
and 4.13 per cent, which are even comparable with those obtained
with noise-free data (see Section 4.1, Fig. 8). This illustrates that
the effectiveness of this source inversion method. Because a source
signature estimation includes not only the amplitude but also the
phase, the normalized zero-lag cross-correlation function only is
insensitive to the amplitude mismatch but not to the whole of the
source signature. Therefore, an estimation of source signature is
still needed to reconstruct models with high resolution when the
source wavelet is severely erroneous.

4.5 Sensitivity of CFWI to non-Gaussian white noise

As pointed by several other authors (Guitton & Symes 2003;
Brossier et al. 2009, 2010; Ha et al. 2009), FWI with the L2 norm is
insensitive to Gaussian white noise, but is sensitive to non-Gaussian
white noise. In what follows, we test FWI with data that resemble
strong ground motion and non-Gaussian noise.
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Figure 12. Multiscale images obtained using noise-free data simulated by the incorrect source wavelets (shown in Fig. 2) without and with source inversion.
The initial model is shown in Fig. 6(b). The left-hand column are the final results obtained by the conventional L2 norm after iterations at the second frequency
band, while the right-hand column are the final results obtained with the normalized zero-lag cross-correlation function after iterations at the same frequency
band. The top two rows are the inverted results with noise-free data simulated by the incorrect source wavelets I and II (Fig. 2), respectively. The bottom row
shows the inverted results with the noise-free data simulated by the incorrect source wavelet I, but employing a source estimation method at each iteration.

4.5.1 Randomly rescaled traces

In this experiment, we randomly rescaled some seismic traces con-
taminated by Gaussian white noise (SNR equal to 20 dB, Fig. 7b)
to simulate a poorly pre-processed strong ground motion data set.
To determine how each trace is rescaled, a pseudorandom number
drawn from the standard uniform distribution on the open interval
(0, 1) is assigned to each trace. Then, any seismic trace is rescaled
(multiplied) by a factor 20 wherever the assigned random number
is greater than 0.95 (i.e. we rescale only 5 per cent of the traces).
Fig. 13(a) shows a common shot gather of the 17th shot records
(see Fig. 7b) generated from the Marmousi model (Fig. 6a), where
some traces appear rescaled as mentioned. The normalized zero-lag
cross-correlation function relaxes on the amplitude matching, so
that it can tolerate wrong or unpredictable amplitude (in the ob-
served data) that cannot be modelled by wavefield extrapolation
operator. Thus, in order to compare with the performances both of
the L2 norm and the normalized zero-lag cross-correlation function
with the performance of the Huber norm as, which is known as its
robustness (Djikpéssé & Tarantola 1999; Guitton & Symes 2003;
Brossier et al. 2009, 2010; Ha et al. 2009; Pyun et al. 2009; Bulcão
et al. 2013; Jimenez Tejero et al. 2014), we also invert all the previ-
ously rescaled traces with the Huber norm. As pointed by Brossier
et al. (2010), the threshold value ε = 0.2 mean(|dobsi |) for the Huber
criterion is less sensitive to outliers in the data than the one indi-

cated by Guitton & Symes (2003) based on max(|dobsi |). Therefore,
we adopt the threshold value ε = 0.2 mean(|dobsi |) in FWI with the
Huber norm.

The multiscale images obtained by FWI with the different ob-
jective functions and the two already mentioned frequency bands
are shown in Fig. 14. From top to bottom, we display the inverted
results with the L2 norm, the Huber norm and the normalized zero-
lag cross-correlation function. From left-hand to right-hand side, we
display the results inverted at the two frequency bands. Obviously,
the models obtained with the L2 norm (top) suffer severe smearing,
whereas FWI with either the Huber norm or the normalized zero-
lag cross-correlation function inverts successfully the Marmousi
model. Nevertheless, it can be easily observed that the results ob-
tained with the Huber norm (middle) are comparatively noisier than
the results obtained by CFWI (bottom). In particular, regarding
the first frequency band, the model obtained with the Huber norm
(Fig. 14c) looks somewhat noisy compared to the model obtained
with the normalized zero-lag cross-correlation function (Fig. 14e).
This same effect remains at the higher frequency band although it
becomes weaker (Fig. 14d). This demonstrates that CFWI can sup-
press noise in the inversion process, which can be further explained
by its adjoint source shown in Fig. 15. It can be observed that the
adjoint source of the Huber norm (Fig. 15a) is clearly noisier in
comparison with those of the normalized zero-lag cross-correlation
function (Fig. 15b). These results illustrate that CFWI can
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Figure 13. Common shot gathers of the 17th shot generated from the Marmousi model. Panel (a) shows the data contaminated by Gaussian white noise with
the signal-to-noise ratio (SNR) of 20 dB, where the seismic traces have been randomly rescaled by a factor 20 to simulate strong ground motion. Panel (b)
shows the data contaminated by non-Gaussian noise generated by adding up to nine rectangles in whose interior the data are first replaced by its average value
and then rescaled by a factor 20.

Figure 14. Multiscale images obtained by FWI with different objective functions. The initial model is shown in Fig. 6(b). From top to bottom, inverted results
computed at two frequency bands with the L2 norm (a and b), the Huber norm (c and d) and the normalized zero-lag cross-correlation function (e and f). Here,
the data is contaminated by Gaussian white noise (SNR equal to 20 dB) and some traces are rescaled by a factor 20 (Fig. 13a).
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Figure 15. The initial adjoint sources of the 17th shot generated from the rescaled traces shot gathers (Fig. 13a) and different objective functions. Panel (a) shows
the initial adjoint source obtained by the Huber norm, while panel (b) shows the initial adjoint source obtained by the normalized zero-lag cross-correlation
function.

Figure 16. Objective function (E) versus the number of iterations in relation to the multiscale images shown in Fig. 14, obtained with the starting velocity model
shown in Fig. 6(a). The curves plotted are convergence curves obtained with the L2 norm (a), the Huber norm (b) and the normalized zero-lag cross-correlation
function (c), respectively. Reference to the two frequency bands considered in this numerical example is done.

successfully invert data contaminated by randomly rescaled seismic
traces (imitating strong ground motion noise). Besides, the MAPEs
associated with the final results obtained by the L2 norm, the Huber
norm and the normalized zero-lag cross-correlation function are
8.48, 4.77 and 5.06 per cent, respectively, which further confirms
the robustness of CFWI to non-Gaussian noise.

In relation to the multiscale images shown in Fig. 14, obtained
with the initial model A (Fig. 6b), the misfit function values ver-
sus the number of iterations are given in Fig. 16, where reference
to the two frequency bands considered in this numerical example
is done. The curves plotted are convergence curves obtained with
the L2 norm (a), the Huber norm (b) and the normalized zero-lag
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Figure 17. Same as in Fig. 14, using data contaminated by spike-type noise (Fig. 13b).

cross-correlation function (c). This demonstrates that FWI with any
of these objective functions and applying the multiscale inversion
is a convergent process instead of a divergent one (meets the pre-
defined stopping criterion). Now then, the L2 norm is sensitive to
randomly rescaled traces data. Compared to the Huber norm, CFWI
can produce clearer images for randomly rescaled traces data that
simulate poorly pre-processed strong ground motion data.

4.5.2 Spike-type noise

To further test the sensitivity of CFWI to a more complex non-
Gaussian noise scenario, we insert up to nine small rectangles (win-
dows) on the shot gathers with rescaled traces such as the ones
shown in Fig. 13(a). Inside each of these rectangles, synthetic data
is first replaced by its average value within the time window and
secondly is rescaled by a factor 20, thus simulating spike-type noise.
The sizes and positions of the nine rectangles are fixed for all 34
shots. As an example, Fig. 13(b) shows the typically synthetic seis-
mograms thus constructed for the 17th shot. We invert these shot
gathers with the initial velocity model A and using the multiscale
strategy.

The inverted results obtained by FWI with the L2 norm, the Huber
norm, and the normalized zero-lag cross-correlation function, with
data contaminated by spike-type noise, are shown in Fig. 17 from
top to bottom. From left-hand to right-hand side, we display the
results inverted at the two frequency bands listed in Section 4.1,
respectively. Similar to the previous case, the resolution obtained
with the L2 norm (Figs 17a and b) is fairly poor (Rao et al. 2006).
As can be seen, both the Huber norm (Figs 17c and d) and the

normalized zero-lag cross-correlation function (Figs 17e and f) are
able to successfully recover the Marmousi model and to produce
comparable results, although both norms generally give rise to low-
resolution images compared those represented in Fig. 15. However,
in contrast with the normalized zero-lag cross-correlation function
(Figs 17e and f), the results obtained by the Huber norm (Figs 17c
and d) are noisier as we already have seen in the last section. It further
indicates that CFWI can effectively suppress noise in the inversion
process. In this numerical example, the MAPEs in correspondence
with the three test functionals are 8.57, 5.73 and 5.84 per cent,
respectively, which again demonstrates that the normalized zero-lag
cross-correlation function is robust, compared to the Huber norm
even with data contaminated by spike-type noise.

In relation to the multiscale images shown in Fig. 17, obtained
with the initial velocity A (Fig. 6b) by FWI with the L2 norm, the
Huber norm and the normalized zero-lag cross-correlation function,
the misfit function values versus the number of iterations are given
in Fig. 18, where reference to the two frequency bands considered
in this numerical example is done (as before). The corresponding
curves converge to the predefined stopping threshold. Once again,
this demonstrates that FWI with any of these objective functions and
applying the multiscale inversion is a convergent process instead of
a divergent one.

5 S E N S I T I V I T Y O F C F W I T O
C YC L E - S K I P P I N G

As we pointed in Section 3, the normalized zero-lag cross-
correlation function seems to be more sensitive to the cycle-skipping
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Figure 18. Same as in Fig. 16, using data contaminated by spike-type noise (Fig. 13b).

problem (i.e. the time difference between the observed and predicted
data is greater than half a cycle) caused by less-accurate initial ve-
locity model than the L2 norm. To investigate this issue, we consider
the noise-free data from shot gathers generated with the Marmousi
model (Fig. 6a), and start the inversions with the initial velocity
model B (described in Section 4.1, Fig. 6c). Fig. 9(a) shows the
observed (solid black lines) and predicted (dashed grey lines) data
excited by the first shot (first cross in Fig. 6a) and recorded at the last
receiver (the inverted triangle), while Fig. 19(b) shows the observed
(solid black lines) and predicted data (dashed grey lines) excited
by the 17th shot (second cross to the right-hand side in Fig. 6a)
and recorded at the same receiver. The two plots contain both the
head wave and direct wave. In Fig. 19(a), the predicted head wave
advances almost 111 ms with respect to the observed head wave,
which is less than half a cycle, that is 254 ms. In Fig. 19(b), the pre-
dicted head wave delay almost 74 ms with respect to the observed
head wave, which is also less than half a cycle, that is 203 ms. This
demonstrates that the predicted data generated by the initial model
B is free from the cycle-skipping problem.

We use the multiscale strategy (Section 4.1) to invert the noise-
free data using the initial model B. In order to check whether
the normalized zero-lag cross-correlation function is sensitive to
the cycle-skipping problem, we also invert the noise-free data
with the L2 norm for a comparison. Fig. 20 shows the multiscale
images obtained using noise-free data (Fig. 7a) and these differ-
ent objective functions. From left to right we display the inverted
results obtained with the L2 norm and the normalized zero-lag
cross-correlation, while from top to bottom we display the results in-
verted at the two frequency bands. Theoretically, since the predicted
data generated by the initial model B is free from cycle-skipping,
both the L2 norm and the normalized zero-lag cross-correlation
function should obtain high-resolution models as those shown in

Fig. 8. Unfortunately, the models obtained by the normalized zero-
lag cross-correlation function (right-hand column in Fig. 20) suffer
smearing at the two frequency bands, whereas FWI with the L2
norm provides almost comparable high-resolution results to those
inverted using the initial model A (Figs 8a and b). This is consistent
with the conclusion drawn in Section 3 (Fig. 3). The MAPEs corre-
sponding to the inverted results shown in Fig. 20 are 5.94 and 6.35
per cent, respectively. This confirms that the normalized zero-lag
cross-correlation function is more sensitive to the cycle-skipping
problem caused by less-accurate initial model.

6 C O N C LU S I O N S

We have implemented FWI with a distinct objective function that
maximizes the minus normalized zero-lag cross-correlation be-
tween the observed and simulated data for FWI. The method, that
we call CFWI, is similar to FWI with the L2 norm, and at the same
time whose robustness is free of a threshold criterion that controls
the transition between the L2 and L1 norms used in the Huber and
Hybrid norms. Because the normalized zero-lag cross-correlation
function relaxes on the amplitude matching and emphasizes the
phase information, it can tolerate wrong amplitude in the observed
data that cannot be predicted by the wavefield extrapolation oper-
ator. Consequently, it is expected that this method is insensitive to
wrong amplitude or to noise in benefit of its further application.
Several numerical experiments support the effectiveness, robust-
ness and sensitivity of CFWI. The effectiveness of CFWI is clear
since it allows to recover the Marmousi model with a resolution
comparable to that of other norms, even with data contaminated by
Gaussian white noise.

In practice, the accurate estimation of the seismic source strength
is difficult so that the amplitude matching achieved by FWI with
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Figure 19. The observed (solid black lines) and predicted (dashed grey
lines) data excited by the two shots shown in Fig. 6 and recorded at the last
receiver (the triangle). The plot (a) shows the data from the first shot, while
the plot (b) shows the data from the 17th shot. The head and direct waves
are indicated in both plots.

the L2 norm is never perfect. On the contrary, CFWI is insensi-
tive to differences in the source strength. FWI with the L2 norm
fails to invert the rescaled shot gathers without appropriate data
pre-processing, however FWI with the normalized zero-lag cross-
correlation function is able to invert these shot gathers success-
fully. Moreover, the normalized zero-lag cross-correlation function
is slightly more insensitive to the source signature than the L2 norm.

The L2 norm leads to a spurious model even when the assumed
source wavelet is slightly erroneous, whereas the normalized zero-
lag cross-correlation function can obtain a low-resolution result.
Nevertheless, an estimation of seismic signature is also necessary
to achieve a high-resolution result when the source signature is
severely erroneous. This is because the seismic source estimation
involves both the amplitude and phase of seismic wavelet.

When testing the sensitivity of CFWI against data contaminated
by non-Gaussian noise, the results obtained with the Huber norm
and the normalized zero-lag cross-correlation function are fully
comparable and both norms give rise to high-resolution images.
CFWI is insensitive to both Gaussian noise and non-Gaussian white
noise. This can be attributed to the fact that the normalized zero-
lag cross-correlation function is equivalent to a time-domain phase
inversion method where the phase spectra of the simulated data
are matched with those of the observed data. CFWI reduces the
importance of the amplitude and provides a basis for using the
phase information to measure the closeness between the observed
and simulated seismic data. Therefore, it is an alternative inver-
sion algorithm that can be used to deal with data contaminated
by non-Gaussian noise. In particular, it can suppress the noise
in data to generate clear images when compared with the Huber
norm.

Finally, even though the predicted data generated by an initial
model to be free from the cycle-skipping problem, the fact is that
the normalized zero-lag cross-correlation function converges to a
low-resolution result, which confirms that it is comparatively more
sensitive to the cycle-skipping problem caused by less-accurate ini-
tial model.
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