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Modeling of frequency-domain elastic-wave equation
with an average-derivative optimal method

Jing-Bo Chen' and Jian Cao'

ABSTRACT

Based on an average-derivative method, we developed a
new nine-point numerical scheme for a frequency-domain
elastic-wave equation. Compared with the classic nine-point
scheme, this scheme reduces the required number of grid
points per wavelength for equal and unequal directional spac-
ings. The reduction in the number of grid points increases as
the Poisson’s ratio becomes larger. In particular, as the Pois-
son’s ratio reaches 0.5, the numerical S-wave phase velocity
of this new scheme becomes zero, whereas the classical
scheme produces spurious numerical S-wave phase velocity.
Numerical examples demonstrate that this new scheme pro-
duces more accurate results than the classical scheme at ap-
proximately the same computational cost.

INTRODUCTION

Frequency-domain numerical modeling of seismic-wave equations
was pioneered by Lysmer and Drake (1972) to describe the wave
propagation in the earth. In analyzing the accuracy of finite-difference
and finite-element modeling of the scalar- and elastic-wave equa-
tions, Marfurt (1984) further examines frequency-domain numerical
modeling. One of Marfurt’s important research results is that fre-
quency-domain finite-element solutions using a weighted average
of consistent and lumped masses lead to accurate results. Pratt and
Worthington (1990) present in detail the implementation of the
classical five-point scheme for frequency-domain 2D acoustic-wave
equation and apply it to multisource crosshole tomography. Based on
the spatial approximations in Kelly et al. (1976), Pratt (1990) devel-
ops a classic nine-point scheme for frequency-domain 2D elastic-
wave equation. Because of its small bandwidth in the resulting
impedance matrix, this scheme is very efficient. To reduce numerical

dispersion, however, this classical scheme requires a large number of
grid points per wavelength.

Based on a rotated coordinates system and averaging mass accel-
eration terms, Jo et al. (1996) develop an optimal nine-point scheme
for 2D scalar-wave equation. The optimization coefficients are
obtained by minimizing the phase velocity errors. This scheme re-
duces the number of grid points per wavelength from 13 to 4 in
comparison with the classical five-point scheme. For frequency-
domain numerical modeling, Jo et al.’s (1996) method is an impor-
tant optimization approach. This approach is then generalized to a
variable-density case (Hustedt et al., 2004) and a 3D case (Operto
et al., 2007). Schemes involving more grid points have also been
developed (Shin and Sohn, 1998; Min et al., 2000; Gu et al., 2013).
These schemes have higher accuracy but lower efficiency.

For frequency-domain elastic-wave modeling, Stekl and Pratt
(1998) propose an optimal nine-point scheme for frequency-domain
2D elastic-wave equation. The construction of the optimal scheme
incorporates Jo et al.’s (1996) method and staggered-grid technique.
This optimal nine-point scheme is particularly desirable because it
not only reduces the number of grid points per wavelength but also
remains approximately the same in terms of computational cost.
However, this optimal scheme suffers from two limitations: (1) It re-
quires equal directional grid intervals and (2) when generalized to the
3D case, it becomes very complicated and requires a lot of transfor-
mations (Operto et al., 2007).

To address these two limitations, we will develop an average-
derivative optimal method for the frequency-domain elastic-wave
equation. This method is a generalization of the corresponding
approach for the acoustic-wave equation (Chen, 2012, 2014) and
results in an average-derivative optimal nine-point scheme for
frequency-domain 2D elastic-wave equation. This new average-
derivative optimal nine-point scheme not only preserves the advan-
tages of the optimal scheme proposed by Stekl and Pratt (1998) but
also accommodates arbitrary directional grid intervals. In addition,
this average-derivative optimal nine-point scheme can be easily
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generalized to a 27-point scheme for the frequency-domain 3D elas-
tic-wave equation.

In the next section, we will present the average-derivative
numerical method for the frequency-domain elastic-wave equation.
This is followed by a numerical dispersion analysis. Then, we
present numerical examples to demonstrate the theoretical analysis.

AN AVERAGE-DERIVATIVE METHOD

We consider the 2D elastic-wave equation in the frequency do-

main:
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where u# and w represent the horizontal and vertical displacement
components, respectively, p is the density, w is the circular frequency,
A and u are the Lamé parameters, and n = 1 + 2u.

We will now discretize equations 1 and 2. Set u,,, ~ u(mAx,
nAz) and w,, , ® w(mAx, nAz), where Ax and Az are the grid in-
tervals in the x- and z-directions, respectively. First, we deal with
equation 1 and it includes five terms. For the first two terms, we
discretize them with an average-derivative method (Chen, 2012):
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Here, y, and y, are the weighted coefficients.
For the third and fourth terms in equation 1, we use the centered
differences:
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For the fifth term in equation 1, we use the weighted average:
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where ¢ and d are the weighted -coefficients and
e=(1-c—4d)/4.

Substituting equations 3-9 into equation 1, and performing the
same discretizations for equation 2, we obtain an average-derivative
nine-point scheme for equations 1 and 2:
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Figure 1 shows the stencil of the average-derivative nine-point
scheme 10 and 11. If we take y; =y, = ¢ = 1 and d = 0, the aver-
age-derivative nine-point scheme 10 and 11 reduces to the classical
nine-point scheme (Pratt, 1990):

1

Ax2 [”m+%,n Upyin— (”m+%.n +’7m—%.n) Umn +’7m—%,num—l,nj|

1
+A—Z2 |::um,n+%um,n+l - (ﬂm.n+%+/’tm_n—%> Umpn +/"m,n—%um,n—1:|

1
+M [’1m+1.n (Wm+1.n+I “Wnt1.n-1 )

_/lm—l,n (Wm—l.n+1 “Wn—1.n-1 )]
1
+M [:Mm.nJrl (Wm+l.n+l _Wm—l.nJrl)

~Hmn-1 (Wm+1,n—1 “Win-1,n-1 )]
+ P @y, =0, (12)

1

sz |:ﬂm+%.nwm+l,n - (Iuer%,n +."‘m—%,n) Wm,n +/‘m—%,nwm—l,n]

1
+A—Zz |:’7m,n+%wm.n+l - (’7mn+%+’7mn—%) Winn +rlm.n—%wm.n—l:|

1
+M[Jum+l.n(um+l.n+l _um+1.n—1)

_,um—l,n(um—l,nﬂ —Up—1n-1 )]
1
erum,m-l (Uit 1 = Um—tn41)
_ﬂm.n—l (um+l,n—1 _um—l.n—l)]
+pm.na)2Wm,n =0. (13)

The average-derivative nine-point scheme 10 and 11 can be easily
generalized to an average-derivative 27-point scheme for the 3D
frequency-domain elastic-wave equation (Appendix A).

NUMERICAL DISPERSION ANALYSIS

We will now perform numerical dispersion analysis for the aver-
age-derivative nine-point scheme 10 and 11. Set

|: u:| —_ |: Uy ] pilkoxtk.z) , (14)

v (2

where u, and v, are the constants that are not equal to zero simul-
taneously and k, and k, are the horizontal and vertical wavenum-
bers, respectively.

Substituting equation 14 into the scheme 10 and 11 and setting the
determinant of the resulting matrix to be zero, we obtain the
P- and S-wave dispersion relations:

1
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where a and f are the P- and S-wave velocities, respectively, and

& = ¢ + 2d(cos(k Ax) + cos(k,Az))
+ de cos(k,Ax) cos(k,Az), (17)

Sxx = [(1 — 71 ) COS(kZAZ) + 71][2 - 2’(:05(kxAx)]7 (18)
E.. = r[(1 —y,) cos(k,Ax) + y5][2 — 2 cos(k,Az)], (19)

E,, = r sin(k,Ax) sin(k,Az), (20)

where r = Ax/Az. Here without loss of generality, we suppose
that Ax=Az.

Let ay, and f,, denote the compressional and shear phase veloc-
ities, respectively. They are defined as

0]
Ah =7+ Ppn = 0 (21)

s

e

where k, and k, are the compressional and shear wavenumbers,
respectively.

From equations 15-21, we can obtain the normalized compres-
sional and shear phase velocities:
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where R=p/a=./05-0/1—-0, o is the
Poisson’s ratio, and G; = 27 /k;Ax is the number
z of grid points per shear wavelength. For the nor-

Figure 1. The stencil of the average-derivative nine-point scheme.

Table 1. The optimization coefficients for different ¢ with
r=Ax/Az=1.

71 72 c d
oc=0.1 0.6814 0.6814 0.6279 0.0923
oc=0.15 0.6702 0.6702 0.6249 0.0931
c=02 0.6577 0.6577 0.6249 0.0938
o =0.25 0.6439 0.6439 0.6254 0.0936
c=03 0.6277 0.6277 0.6265 0.0934
o =035 0.6079 0.6079 0.6283 0.0929
c=04 0.5828 0.5828 0.6308 0.0923
o =045 0.5488 0.5488 0.6337 0.0916
c=0.5 0.5 0.5 0.5096 0.1226

Table 2. The optimization coefficients for different ¢ with
r=Ax/Az = 1.25.

malized P-wave phase velocity (equation 22), the
expressions k, Ax and k, Az should be replaced by

27zR sin 0 27R cos 0
k,Ax = ————, k, Az = ——, 24
Ax G. Az Gor (24)

and for the normalized S-wave phase velocity (equation 23), the ex-
pressions k,Ax and k Az should be replaced by

kxAx:Z”Sine, k,Az:Z”COSG,
- G,r

G (25)

where @ is the propagation angle.
The coefficients y;, y,, ¢, and d are determined by minimizing the
phase error:

12’9; ’ ’ 7d, s B
E(Vla}’z,c,d,r,a)://{ |:1_aph( Y1:Y25,C ro')

a

];96; 9 ’ 7d» ’ 2 7
ﬂph( 71 [7;2 ¢ a,r 0)] }dkd@,

+ {1 - (26)

where k = 1/G,.

Table 3. The optimization coefficients for different ¢ with
r=Ax/Az=2.

71 72 ¢ d 71 72 ¢ d
c=0.1 0.7334 0.6528 0.6284 0.0929 c=0.1 0.9987 0.6118 0.6297 0.0926
o =0.15 0.7179 0.6448 0.6282 0.0930 o =0.15 0.9649 0.6062 0.6296 0.0926
c=02 0.7009 0.6356 0.6285 0.0930 =02 0.9294 0.5994 0.6297 0.0926
o =0.25 0.6875 0.6211 0.6285 0.0929 o =0.25 0.8854 0.5923 0.6302 0.0924
c=03 0.6646 0.6087 0.6303 0.0924 =03 0.8414 0.5830 0.6502 0.0826
c=0.35 0.6535 0.6001 0.7183 0.0491 o =0.35 0.7818 0.5699 0.6321 0.0919
c=04 0.6053 0.5710 0.6344 0.0914 c=04 0.7160 0.5546 0.6550 0.0810
o =045 0.5619 0.5419 0.6373 0.0907 o =045 0.6288 0.5331 0.7050 0.0566
c=0.5 0.5 0.5 0.5145 0.1214 =05 0.5 0.5 0.5306 0.1173
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The integration in equation 26 is usually used to simplify the
optimization process (Jo et al., 1996). The ranges of k and 6 are
taken as [0,0.25] and [0, z/2], respectively. We use a constrained
nonlinear optimization program fmincon in MATLAB to deter-
mine the optimization coefficients. This program consists of three

Classical nine-point scheme

Frequency-domain elastic modeling

Average-derivative nine-point scheme
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kinds of algorithms: trust region reflective, active set, and interior
point. The program fmincon is widely used in constrained non-
linear optimizations. The optimization coefficients for different o
with r =Ax/Az=1, r=Ax/Az=125, and r = Ax/Az=2
are listed in Tables 1, 2, and 3, respectively.

Figure 2. Normalized compressional and shear
phase velocity of the classical nine-point scheme
and the average-derivative optimal nine-point
scheme for different propagation angles 6. Here,
0=025and r = Ax/Az = 1.

Figure 3. Normalized compressional and shear
phase velocity of the classical nine-point scheme
and the average-derivative optimal nine-point
scheme for different propagation angles 6. Here,
6=04and r = Ax/Az=1.
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Now, we make a numerical dispersion analysis and we first con-
sider the case in which r = Ax/Az = 1. Figure 2 shows normalized
compressional and shear phase velocity of the classical nine-point
scheme and the average-derivative optimal nine-point scheme for
different propagation angles 6 and for ¢ = 0.25. Compared with

Figure 4. Normalized compressional and shear
phase velocity of the classical nine-point scheme
and the average-derivative optimal nine-point
scheme for different propagation angles 6. Here,
c=05and r = Ax/Az=1.

Figure 5. Normalized compressional and shear
phase velocity of the classical nine-point scheme
and the average-derivative optimal nine-point
scheme for different propagation angles 6. Here,
oc=0.25and r = Ax/Az=2.

Chen and Cao

Classical nine-point scheme

the classical nine-point scheme, the average-derivative optimal
nine-point scheme reduces the phase velocity errors, particularly
for the shear phase velocity. This difference in errors reduction be-
tween compressional and shear phase velocity probably results from
the optimization method. Within the phase errors of 2%, the aver-

Average-derivative nine-point scheme
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age-derivative optimal nine-point scheme requires four grid points
per shear wavelength, whereas for the classical nine-point scheme,
it requires 10 grid points per shear wavelength. Figure 3 shows
normalized compressional and shear phase velocity of the classical
nine-point scheme and the average-derivative optimal nine-point
scheme for different propagation angles € and for ¢ = 0.4. We

T345

can see that as ¢ increases, the shear phase velocity errors become
larger for the classical nine-point scheme. In this case, within the
phase errors of 2%, the average-derivative optimal nine-point scheme
still requires four grid points per shear wavelength, whereas for the
classical nine-point scheme, it requires 20 grid points per shear wave-
length.

Classical nine-point scheme

Average-derivative nine-point scheme
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Figure 6. Normalized compressional and shear
phase velocity of the classical nine-point scheme
and the average-derivative optimal nine-point
scheme for different propagation angles 6. Here,
6=04and r = Ax/Az =2.

Figure 7. Normalized compressional and shear
phase velocity of the classical nine-point scheme
and the average-derivative optimal nine-point
scheme for different propagation angles 6. Here,
6=0.5and r = Ax/Az =2.
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Perfectly matched layers

Figure 8. Schematic of the homogeneous model.

Figure 9. Frequency-domain seismograms (w =
30x) computed with the analytical formula (green
line), the classic nine-point scheme (blue line), and
the average-derivative scheme (red line). (a) 6 =
0.25 and (b)o = 0.4. Here, Ax/Az = 1.

&0
~

Normalized amplitude

Normalized amplitude

Normalized amplitude

Normalized amplitude

In Figure 4, we show the case in which ¢ = 0.5. In this case,
the theoretical shear phase velocity should be zero. For the classical
nine-point scheme, it produces spurious shear waves and cannot
be used in this case as a result. For the average-derivative optimal
nine-point scheme, the S-wave phase velocity is zero. Within the
phase errors of 5%, the average-derivative optimal nine-point
scheme requires four grid points per compressional wavelength. Fig-
ures 5, 6, and 7 show the situation in which r = Ax/Az = 2. Be-
cause of the relatively smaller Az, the corresponding phase errors
are all smaller.

In our research, we are only concerned with phase velocity
errors. For completeness, however, we have derived the normal-
ized compressional group velocity @, /@ and shear group velocity
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Compared with the phase velocity, the group velocity has larger
errors. The average-derivative optimal nine-point scheme still has
smaller errors in comparison with the classical nine-point scheme.
Because we mainly deal with the phase velocity, we have not shown
the results here.

E=—2d {sin(kxAx)sine—ksm (k:A2) COSG}

4
Xsin 9——ecos(kXAx) sin(k,Az)cos0,
r

Ek=— —n sin(k,Az)cos0[2—2cos(k,Ax)]
+2[(1=y;)cos(k,Az)+y ]sin(k,A,)sind,
E..x=—1*(1—y,)sin(k,Ax)sin@[2—2cos(k.Az)]

+2r[(1—y,)cos(k,Ax)+y,]sin(k,Az)cos0,

—4esin(k,Ax)cos(k,Az)

NUMERICAL EXAMPLES

In this section, numerical examples are presented to make com-
parisons between the average-derivative optimal nine-point scheme
and the classic nine-point scheme.

A homogeneous model

We first consider a homogeneous velocity model for which an ana-

Exgp=rcos(kAx)sin(k Az)sind+sin(k, Ax)cos(k Az)cosd.  (29) lytical solution is available. The P-wave velocity is 3500 m/s. We
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take a constant density p = 2000 kg/m?. For the Poisson’s ratio, we
take o = 0.25 and 0.4, respectively. The corresponding S-wave
velocities are 2021 and 1429 m/s, respectively. The numbers of
horizontal and vertical grid points are both 101. To make a compari-
son with the analytical solution in the full space, perfectly matched
layer (PML) boundary conditions are used on the four sides of the
computational domain (Appendix B). Figure 8 shows the schematic
of the homogeneous model.

We compute the frequency-domain numerical solutions and com-
pare them with the analytical solution (Min et al., 2000). First, we
take the circular frequency @ to be 30z. According to the criterion
of four grid points per shear wavelength, the sampling intervals for
o = 0.25 and 0.4 are 32 and 22 m, respectively. A single vertical

force is applied at the center of the model with a Ricker wavelet
time history, and a receiver array is placed at the 17th layer in
the z-direction. Second, the circular frequency w is taken to be
607. According to the criterion of four grid points per shear wave-
length, the sampling intervals for 6 = 0.25 and 0.4 are 16 and 11 m,
respectively. A receiver array is placed at the 34th layer in the z-
direction.

Figures 9 and 10 show frequency-domain seismograms (# and w)
computed with the analytic formula, the classical nine-point scheme,
and the average-derivative optimal nine-point scheme for @ = 30z
and 60z, respectively, where r = Ax/Az = 1. The relative errors
of the two nine-point schemes in comparison with the analytical
solution are also displayed. Figures 11 and 12 show the correspond-
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Figure 13. Schematic of the half-space model.

Figure 14. Time-domain seismograms of Lamb’s
problem computed with the analytical solution
(green line), the classic nine-point scheme (blue
line), and the average-derivative optimal nine-point
scheme (red line) at the free-surface with an offset
of 660 m: Poisson’s ratio (a) o = 0.25 and
(b) 6 =0.4.

&0
~

Normalized amplitude

Normalized amplitude

=2
~

Normalized amplitude

Normalized amplitude

0.5

0.5

0.5

Chen and Cao

ing results for the case in which r = Ax/Az = 2. From these fig-
ures, we can see that the results of the average-derivative optimal
nine-point scheme are in relatively good agreement with the ana-
lytical results. The results of the classic nine-point scheme exhibit
large errors due to numerical dispersion. It should be noted that the
computational cost of the classic nine-point scheme and the aver-
age-derivative optimal nine-point scheme is approximately the
same.

Lamb’s problem

To address Lamb’s problem, a proper numerical treatment of the
free-surface boundary condition is essential. In our example, we use
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an improved free-surface expression presented in Cao et al. (2016).
This improved free-surface expression is based on the parameter-
modified expression for the free surface (Mittet, 2002; Xu et al.,
2007). The analytical solution is calculated with the Cagniard-de
Hoop method (Aki and Richards, 1980).

A finite-size model of 1200 X 240 m is considered in our com-
putation. We take two Poisson’s ratios ¢ = 0.25 and 0.4. The cor-
responding grid intervals are Ax = 6 m, Az =6 mand Ax =4 m,
Az = 4 m, respectively. To simulate wave propagation in the half-
space, PML boundary conditions are used on the other three sides of
the model (Figure 13). A single vertical force is applied at the depth
of 48 m. Figure 14 shows the time-domain seismograms (¢ and w)
computed with the analytic solution, the classical nine-point
scheme, and the average-derivative optimal nine-point scheme at
the free-surface with an offset of 660 m. In comparison with the
classical nine-point scheme, the average-derivative optimal nine-
point scheme agrees with the analytical solution better. The remain-
ing errors are probably due to the inaccuracies in numerical treat-
ment of the free-surface boundary condition.

Overthrust model

‘We now consider part of the overthrust model with a Poisson’s
ratio of 0.25 and a constant density of 2300 kg/m? (Figure 15). On
the top side, we use a centered finite-difference free-surface boun-
dary condition (Alterman and Karal, 1968). For the remaining three
sides, PML boundary conditions are applied. The numbers of hori-
zontal and vertical grid points are nx = 275 and nz = 75, respec-
tively. We take Ax = 10 m and Az = 5 m. A single vertical force
with a Ricker wavelet time history is applied at (x = 1370 m and
z = 50 m). Two receiver lines are set at the depth of 30 and 180 m.
The circular frequency @ is taken to be 60z.

For this model, an analytic solution is not available. To make
comparisons, we use a method of finer grids. Figure 16 shows fre-
quency-domain seismograms (# and w) at receiver line 1 computed
with the classic nine-point scheme with Ax = 10 mand Az =5 m,
the classic nine-point scheme with Ax = 5 m and Az = 2.5 m, and
the average-derivative optimal nine-point scheme with Ax = 10 m
and Az =5 m. Figure 17 shows the corresponding results at
receiver line 2. We can see that the results of the average-derivative
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Figure 15. Part of the overthrust model (P-wave velocity). We take
6 = 0.25 and a constant density p = 2000 kg/m>.

optimal nine-point scheme on a coarse grid are closer to those of the
classic nine-point scheme on a fine grid. This demonstrates that the
average-derivative optimal nine-point scheme is more accurate than
the classical nine-point scheme when these two schemes are com-
puted on the grid with the same grid intervals.
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Figure 16. Frequency-domain seismograms (upper plot: u# and
lower plot: w) at receiver line 1 computed with the classic nine-point
scheme with Ax = 10 mand Az = 5 m (blue line), the classic nine-
point scheme with Ax = 5 m and Az = 2.5 m (green line), and the
average-derivative scheme with Ax =10 m and Az =5 m (red
line).
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Figure 17. Frequency-domain seismograms (upper plot: u and
lower plot: w) at receiver line 2 computed with the classic nine-point
scheme with Ax = 10 mand Az = 5 m (blue line), the classic nine-
point scheme with Ax =5 m and Az = 2.5 m (green line), and the
average-derivative scheme with Ax =10 m and Az =5 m (red
line).
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Salt model

We now consider a salt model that contains various Poisson’s
ratios including o = 0.5. Figure 18 shows the P-wave velocity,
S-wave velocity, density, and Poisson’s ratio of the model (House
et al., 2000). The parameters of this salt model are nx = nz = 251,
Ax=5m, and Az =4 m. The optimization coefficients for
this directional grid interval are listed in Table 2. For a Poisson’s
ratio that is not covered in Table 2, we use linear interpolation
to obtain the corresponding optimization coefficients. An explosive
Ricker source with peak frequency of 15 Hz is applied at
(x = 625 m and z = 120 m), and a receiver array is set at the depth
of 40 m.

Figure 19 shows monochromatic wavefields of 15 and 30 Hz
computed with the classic nine-point scheme and the average-
derivative optimal nine-point scheme. Due to the spurious S-waves
generated by the classical nine-point scheme, the wavefields
computed with the classical nine-point scheme exhibit badly con-
taminated results in the water, particularly for the wavefield of
15 Hz. These spurious S-waves are a kind of artifacts produced
by numerical discretizations. The reason why we call them
spurious S-waves is because these artifacts stem from the S-wave
numerical dispersion relation of the classical nine-point scheme
when the Poisson’s ratio is 0.5. On the other hand, the wavefields
computed with the average-derivative optimal nine-point scheme
show clean results in the water. This is because the numerical
S-wave phase velocity of the average-derivative optimal nine-point
scheme becomes zero in the water. We show the time-domain seis-
mograms computed with the classic nine-point scheme and the
average-derivative optimal nine-point scheme in Figure 20. These
time-domain seismograms are obtained by temporal Fourier trans-
form of frequency-domain wavefields. In comparison with the seis-
mogram computed with the average-derivative optimal nine-point
scheme, the seismogram computed with the classical nine-point
scheme is dominated by low-velocity spurious S-waves and thus
become unacceptable.

Figure 18. The salt model: (a) P-wave velocity, a)
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Figure 19. (a) Monochromatic wavefields of the salt model com-

puted with the classic nine-point scheme and (b) the average-deriva-
tive optimal nine-point scheme.
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Figure 20. (a) Time-domain seismograms computed with the clas-
sic nine-point scheme and (b) the average-derivative optimal nine-
point scheme.

CONCLUSIONS

We have developed an average-derivative optimal nine-point
scheme for frequency domain 2D elastic-wave equation. Compared
with the classical nine-point scheme, this new nine-point scheme
reduces the number of grid points per shear wavelength from 10
or 20 to 4 for ¢ = 0.25 or 0.4. For ¢ = 0.5, the S-wave phase veloc-
ity of the new nine-point scheme is zero, whereas the classical nine-
point scheme produces spurious S-waves. These conclusions apply
to arbitrary directional grid intervals. Numerical examples demon-
strate that the new nine-point scheme produces more accurate mod-
eling results in comparison with the classical nine-point scheme at
approximately the same computational cost. This new nine-point
scheme is also generalized to an average-derivative 27-point scheme
for frequency-domain 3D elastic-wave equation.
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APPENDIX A
3D CASE

We consider the 3D elastic-wave equation in the frequency do-
main
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where u, v, and w are the particle displacements in the x-, y-, and
z-directions, respectively.

Using the same approach as the 2D case, an average-derivative
27-point scheme for equations A-1-A-3 can be obtained as
follows:
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ryAZ [/’lm.H»l.n (vm,[+l.n+l U i+1,n-1 ) “Hmi-1n (vln.l—l,n+l ~Um,i-1.n-1 )]

+Pmin@* (W10 +dA+eB+fC)=0, (A-6)
where

Pntjin =0 (Pt + Ptjtn1 T Pmtjietn + Pmtjtn-1)
+ (Pitjistnet F Putjimtinst T Pintjistnmt + Pmtjictn-1)
+(1=da;=4a) ppijins J=-1,0,1,
Pmitjn =P (Pt iejn + Pinidsjinst F Pt ibjn + Pimisjin-1)
B2 Pttt jnset F Pttt jnt F Pinetitjntt + Pmetisjin—1)
+(1=48,=4B2) P jms J==1,0,1,
Pnin+i =V (Pt tint T Pttt T Pmetintj + Pmd—tinss)
72 (Pms it s + Pt it i+ Pt it F Pt/
+(1=471=472) Pminsj» J=—1,0,1,
A=(PuisintPminst + Pmictn T Podn—t T Pmrtsn+ Pm—tin)s
B=(Pwitistnt Pmitinit + Pmitiotn+ P tin—t + Pmetisint Pmtint1
+ Pttt Pm—tin-t F Pmistnit + Puict it + Pttt + Pmiinm1)s
C=(Pmt141nt1 FPmi =1+t T Pmtit10=1 F Pt 11101

+ Pttt F PintimLns1 T Pt i 1n=1 F Piueti=1=1)5 (A-T)

where p represents u, v, or w, and ay, a», f1, P2, 71, V2, ¢, d, and e
are coefficients. Here, f = (1 —c — 6d — 12¢)/8.

APPENDIX B

IMPLEMENTATION OF PML BOUNDARY
CONDITIONS

The 2D frequency-domain elastic-wave equations with PML
boundary conditions are

Lo (), 1o (ua) 10 (dom)
&, ox \&, 0x £,0z\¢&, 0z £, 0x \¢&, oz
19 (now

- 2u=0 B-1
£ oz 5xax>+”“’” : (B-1)

19 (ﬁ%) +1le (1%) L1 (ﬁ%)
goox\& ox) &0z \& oz) & ox \E oz

10 /40
+—— (__u) + po*w = 0, (B-2)
£ 0z
where

E(x) = —i&cos (7[ x), (B-3)

o \2L,

&(2) = —jcos (g%) (B-4)

where L, and L, denote the width of the PML layer in x-, and z-di-
rections, respectively. The coordinates x and z are local coordinates
whose origins are located at the outer edges of the PML layers. The
scalars ¢, and c, are determined by trial and error (Operto et
al., 2007).

The corresponding average-derivative optimal nine-point scheme
becomes

1 Mptin _ Mmain Mm=Ln _ Mn—in _
|:—2um+l.n - < —+ . U,n +§—zum—1.n
X, 1

2
&, Ax fx",% 5&@ 5*,,,,% -}
l |:ﬂm,n+1 ~ </’4m.n+l ﬂm,n—% ~ ”m.n—l ~
+ —i - 24 2 ity + 2
2 m,n+1 m,n m,n—1
S R S Guy Sy
1 A +1 A —1
+m |: n; - (Wm+1.n+l “Wintln-1 ) - (wm—l.n+1 _Wm—l.n—l)
X % Zn
1 Hm.nt1 Hm.n-1
| w, — Wy - w, 1= Wil
452” AxAz |: gxm ( m+1,n+1 m 1,n+1) ‘f,\-m ( m+1,n—1 m—1,n l)

2
+pm.nw [Cusz +d(um+l.n +um*1,n + U nt1 +um.nfl )

+e(uer],nJrl +um—],n+] +um+1,n—] +um—l.n4 )] :0’ (B_S)



Downloaded 09/26/16 to 222.128.191.166. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

Frequency-domain elastic modeling T355
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Kk

£, AC &, &, £,
2 i i 1
1 M+l Mot ML\ - M=t
+ 2y - i NS AT P
fzn AZZ I: fz,(,L mn+ fz"‘l fzn_l m,n ézn_L m,n
2 i 1 1
1 Hm+1.n P n
t Ao —(u —U )=y —U
4§lmAxAz{ &, (Ut 11 = U1 1) g (U1 1 = U1 1)
1 lm n+1 /Im el
t G : u — Uy e o
4§z“AXAZ|: fx,,, ( m+1,n+1 m l.n+|) 5)&,,, ( m-+1,n—1 m—1,n l)

2
+pm.nw [Cwm,n +d(wm+l.n + Up—1.n +Wm,n+1 + Wm.n—l)
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We can rewrite schemes B-5 and B-6 as

ClUm—1n—1 T CoUp -1+ C3Upyy 1 p—1 T Callyy—1 n+Csllpy
T C6Umt 10T CTUm—1,041 T C8UM 1 T COUp i1t 1
+di Wit w1 T Wt 1 T3Wp_ 1t HdaWii1 001 =0,
(B-7)

dl Win—1,n—1 +d2wm,n—1 +d3wm+1.n—1 + d4wm—1.n + dSWm,n
+d6wm+l,n + d7wm—l,n+l + dSWm,n+l +d9wm+l,n+l

+C1Upt pet + Colpt 1+ C3 Ut g1 T Callyyt pp1+=0,

(B-8)
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REFERENCES

Aki, K., and P. G. Richards, 1980, Quantitative seismology, theory and
methods, I: W. H. Freeman and Company.

Alterman, Z., and F. Karal, 1968, Propagation of elastic waves in layered
median by finite differences methods: Bulletin of the Seismological So-
ciety of America, 58, 367-398.

Cao, J., J. B. Chen, and M. X. Dai, 2016, Improved free-surface expression
for frequency-domain elastic optimal mixed-grid modeling: Journal of
Applied Geophysics, 130, 71-80, doi: 10.1016/j.jappgeo.2016.04.010.

Chen, J.-B., 2012, An average-derivative optimal scheme for frequency-do-
main scalar wave equation: Geophysics, 77, no. 6, T201-T210, doi: 10
.1190/ge02011-0389.1.

Chen, J.-B., 2014, A 27-point scheme for a 3D frequency-domain scalar
wave equation based on an average-derivative method: Geophysical Pro-
specting, 62, 258-277, doi: 10.1111/1365-2478.12090.

Gu, B., G. Liang, and Z. Li, 2013, A 21-point finite difference scheme for
2D frequency-domain elastic wave modeling: Exploration Geophysics,
44, 156-166, doi: 10.1071/EG12064.

House, B., S. Larsen, and J. B. Bednar, 2000, 3-D elastic numerical model-
ing of a complex salt structure: 70th Annual International Meeting, SEG,
Expanded Abstracts, 2201-2204.

Hustedt, B., S. Operto, and J. Virieux, 2004, Mixed-grid and staggered-grid
finite-difference methods for frequency-domain acoustic wave modeling:
Geophysical Journal International, 157, 1269-1296, doi: 10.1111/
.1365-246X.2004.02289.x.

Jo, C.-H., C. Shin, and J. H. Suh, 1996, An optimal 9-point, finite-difference,
frequency-space, 2-D scalar wave extrapolator: Geophysics, 61, 529-537,
doi: 10.1190/1.1443979.

Kelly, K. R., S. Treitel, and R. M. Alford, 1976, Synthetic seismograms: A
finite difference approach: Geophysics, 41, 2-27, doi: 10.1190/1.1440605.

Lysmer, J., and L. A. Drake, 1972, A finite element method for seismology,
in B. A. Bolt, ed., Methods in computational physics: Academic Press,
Seismology: Surface waves and earth oscillations 11, 181-216.

Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element mod-
eling of the scalar and elastic wave equations: Geophysics, 49, 533-549,
doi: 10.1190/1.1441689.

Min, D.-J., C. Shin, B.-D. Kwon, and S. Chung, 2000, Improved frequency-
domain elastic wave modeling using weighted-averaging difference oper-
ators: Geophysics, 65, 884-895, doi: 10.1190/1.1444785.

Mittet, R., 2002, Free-surface boundary conditions for elastic staggered
modeling schemes: Geophysics, 67, 1616-1623, doi: 10.1190/1.1512752.


http://dx.doi.org/10.1016/j.jappgeo.2016.04.010
http://dx.doi.org/10.1016/j.jappgeo.2016.04.010
http://dx.doi.org/10.1016/j.jappgeo.2016.04.010
http://dx.doi.org/10.1016/j.jappgeo.2016.04.010
http://dx.doi.org/10.1016/j.jappgeo.2016.04.010
http://dx.doi.org/10.1016/j.jappgeo.2016.04.010
http://dx.doi.org/10.1190/geo2011-0389.1
http://dx.doi.org/10.1190/geo2011-0389.1
http://dx.doi.org/10.1190/geo2011-0389.1
http://dx.doi.org/10.1111/1365-2478.12090
http://dx.doi.org/10.1111/1365-2478.12090
http://dx.doi.org/10.1111/1365-2478.12090
http://dx.doi.org/10.1071/EG12064
http://dx.doi.org/10.1071/EG12064
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02289.x
http://dx.doi.org/10.1190/1.1443979
http://dx.doi.org/10.1190/1.1443979
http://dx.doi.org/10.1190/1.1443979
http://dx.doi.org/10.1190/1.1440605
http://dx.doi.org/10.1190/1.1440605
http://dx.doi.org/10.1190/1.1440605
http://dx.doi.org/10.1190/1.1441689
http://dx.doi.org/10.1190/1.1441689
http://dx.doi.org/10.1190/1.1441689
http://dx.doi.org/10.1190/1.1444785
http://dx.doi.org/10.1190/1.1444785
http://dx.doi.org/10.1190/1.1444785
http://dx.doi.org/10.1190/1.1512752
http://dx.doi.org/10.1190/1.1512752
http://dx.doi.org/10.1190/1.1512752

Downloaded 09/26/16 to 222.128.191.166. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/

T356 Chen and Cao

Operto, S., J. Virieux, P. Amestoy, J.-Y. L’Excellent, L. Giraud, and H. B. H.
Ali, 2007, 3D finite-difference frequency-domain modeling of visco-acous-
tic wave propagation using a massively parallel direct solver: A feasibility
study: Geophysics, 72, no. 5, SM195-SM211, doi: 10.1190/1.2759835.

Pratt, R. G., 1990, Frequency-domain elastic wave modeling by finite differ-
ences: A tool for crosshole seismic imaging: Geophysics, 55, 626-632, doi:
10.1190/1.1442874.

Pratt, R. G., and M. H. Worthington, 1990, Inverse theory applied to multi-
source cross-hole tomography, Part I: Acoustic wave equation method:
Geophysical Prospecting, 38, 287-310, doi: 10.1111/j.1365-2478.1990.
tb01846.x.

Shin, C., and H. Sohn, 1998, A frequency-space 2D scalar wave extrapolator
using extended 25-point finite-difference operator: Geophysics, 63, 289—

. 296, doi: 10.1190/1.1444323.

Stekl, 1., and R. G. Pratt, 1998, Accurate viscoelastic modeling by fre-
quency-domain finite difference using rotated operators: Geophysics,
63, 1779-1794, doi: 10.1190/1.1444472.

Xu, Y. X., J. H. Xia, and R. D. Miller, 2007, Numerical investigation of
implementation of air-earth boundary by acoustic-elastic boundary ap-
proach: Geophysics, 72, no. 5, SM147-SM153, doi: 10.1190/1.2753831.


http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/1.2759835
http://dx.doi.org/10.1190/1.1442874
http://dx.doi.org/10.1190/1.1442874
http://dx.doi.org/10.1190/1.1442874
http://dx.doi.org/10.1111/j.1365-2478.1990.tb01846.x
http://dx.doi.org/10.1111/j.1365-2478.1990.tb01846.x
http://dx.doi.org/10.1111/j.1365-2478.1990.tb01846.x
http://dx.doi.org/10.1111/j.1365-2478.1990.tb01846.x
http://dx.doi.org/10.1111/j.1365-2478.1990.tb01846.x
http://dx.doi.org/10.1111/j.1365-2478.1990.tb01846.x
http://dx.doi.org/10.1111/j.1365-2478.1990.tb01846.x
http://dx.doi.org/10.1190/1.1444323
http://dx.doi.org/10.1190/1.1444323
http://dx.doi.org/10.1190/1.1444323
http://dx.doi.org/10.1190/1.1444472
http://dx.doi.org/10.1190/1.1444472
http://dx.doi.org/10.1190/1.1444472
http://dx.doi.org/10.1190/1.2753831
http://dx.doi.org/10.1190/1.2753831
http://dx.doi.org/10.1190/1.2753831

