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Abstract. Seismic interpolation, as an efficient strategy of providing reliable wavefields, belongs to large-scale computing
problems. The rapid increase of data volume in high dimensional interpolation requires highly efficient methods to relieve
computational burden. Most methods adopt the L1 norm as a sparsity constraint of solutions in some transformed domain;
however, the L1 norm is non-differentiable and gradient-type methods cannot be applied directly. On the other hand,
methods for unconstrained L1 norm optimisation always depend on the regularisation parameter which needs to be chosen
carefully. In this paper, a fast gradient projection method for the smooth L1 problem is proposed based on the tight frame
property of the curvelet transform that can overcome these shortcomings. Some smooth L1 norm functions are discussed
and their properties are analysed, then the Huber function is chosen to replace the L1 norm. The novelty of the proposed
method is that the tight frame property of the curvelet transform is utilised to improve the computational efficiency.
Numerical experiments on synthetic and real data demonstrate the validity of the proposed method which can be used in
large-scale computing.
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Introduction

Seismic data that violates the Nyquist–Shannon sampling
theorem may bring harmful aliases and deteriorate the results
ofmigration,multiple elimination, de-noising, andAVOanalysis
(Liu, 2004; Naghizadeh and Sacchi, 2010). Seismic interpolation
is a valid technique to enhance sampling density, by removing
spatial aliasing and improving imaging accuracy (Spitz, 1991;
Kreimer and Sacchi, 2013), and forms a crucial step in the
seismic processing flow.

Many interpolation methods have been proposed in past
decades, and signal processing based methods are the
mainstream at present (Duijndam et al., 1999; Liu, 2004;
Naghizadeh and Sacchi, 2010; Spitz, 1991). An important
branch of these methods is the sparse transform based method
combinedwith a regularisation strategy. For this method, seismic
interpolation is treated as an inverse problem, and seismic events
are assumed to be sparse in some transformed domain, such as the
Fourier transform (Sacchi and Ulrych, 1996; Sacchi et al., 1998;
Duijndam et al., 1999; Xu et al., 2005; Liu, 2004), or the linear
Radon transform (Trad et al., 2002). Satisfactory results are
obtained by these transforms under the assumption of linear
events, while for curved evens, it should be dealt window by
window. The curvelet transform, as a multi-scale and multi-
directional transform, can represent curved events effectively
and it can avoid the assumption of linear events (Herrmann and
Hennenfent, 2008). Recently, seismic data interpolationmethods

based on matrix/tensor completion have been proposed (Yang
et al., 2012; Kreimer and Sacchi, 2012a, 2012b, 2013).

As a large-scale computing problem, seismic data
interpolation requires efficient methods to reduce the
increasing computational cost. Abma and Kabir (2006)
introduced the projection onto convex sets (POCS) method to
irregular seismic interpolation. Zwartjes and Sacchi (2007)
adopted iterative-reweighted least-squares for interpolation.
The iterative soft thresholding (IST) method was introduced
by Herrmann and Hennenfent (2008). An improvement of the
IST method, the fast iterative soft thresholding algorithm
(FISTA), was recently proposed to alleviate the computational
cost of the IST method. The spectral projected gradient for L1

minimisation (SPGL1)method can obtain robust sparse solutions
for L1 constraint problems (van den Berg and Friedlander, 2009).
These methods, however, are time consuming for the huge
seismic data sets, therefore more efficient methods should be
researched.

All the abovemethods use the L1 norm tomeasure the sparsity
of solutions, but the L1 norm is non-differentiable at origin, and
gradient-type methods cannot be applied directly. Researchers
intend to solve the unconstrained L1 norm regularisation,
however, the regularisation parameter needs to be chosen
carefully to obtain sparse solutions. In order to overcome the
non-differentiability of the L1 norm, some smooth functions are
proposed to approximate it, then the gradient-based methods
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Fig. 2. (a) fy(x) with y= 10 000. (b) Magnified view of (a).
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can be applied and the regularisation parameter is not required
based on the gradient projection method with smooth L1 norm
approximation.

In this paper, some smooth L1 norm functions are analysed
first, then the Huber function is chosen to approximate the L1

norm. A curvelet-based fast gradient projection method is
proposed to solve the equality constrained smooth L1 norm
optimisation. The novelty of the proposed method is the use of
the tight frame property of the curvelet transform to reduce the
computational cost. Numerical examples on synthetic and real
seismic data demonstrate the validity of the proposed method.

Sparse optimisation model of seismic interpolation

Mathematical model of seismic sparse interpolation

Seismic interpolation can be treated as an inverse problem, and
the forward problem can be denoted as

Fx ¼ b; ð1Þ
where F denotes the sampling processing, x is the complete
seismic data, and b is the sampled data. There are infinitely many
solutions theoretically, but we can utilise some prior information
to find the solutions with physical meaning. Sparsity of the
seismic data in a transformed domain is commonly used
because seismic events can be sparsely expressed by some
transforms. For seismic processing, some familiar transforms
are the Fourier transform (Liu, 2004; Zwartjes and Sacchi, 2007),
the linear Radon transform (Trad et al., 2002), the parabolic
Radon transform (Darche, 1990) and the curvelet transform
(Herrmann and Hennenfent, 2008). Recently, Gaussian beams
have been adopted for seismic data decomposition (Liu et al.,
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Table 1. Comparison of smooth L1, FISTA and SPGL1 methods for
shot data.

Smooth L1 FISTA SPGL1

CPU time (s) 56 73 156
SNR (db) 10.4975 9.8556 9.9523
Relative error 0.2986 0.3215 0.3180
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Fig. 5. (a) Interpolation of shot data by smooth L1 method. (b) Difference between (a) and original shot data.
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2013; Wang et al., 2013). If s=Yx is sparse, where Y is an
orthogonal transform or tight frame, equation 1 can be changed to

Fx ¼ FY*s ¼ As ¼ b; ð2Þ
where Y* is the Hermitian transpose of Y and A =FY*. Many
methods have been developed to find sparse solutions to equation
2, such as greedy algorithms (Mallat and Zhang, 1993), convex
optimisation (Beck and Teboulle, 2009; van den Berg and
Friedlander, 2009; Chen et al., 1998) and non-convex
optimisation (Mohimani et al., 2009). Convex optimisation
methods with theoretically rigorous justification are suitable
for large-scale computation (Cao et al., 2012; Chen et al.,
1998). The most commonly used convex optimisation is the
basis pursuit problem:

min
����s����

1
s:t:As ¼ b; ð3Þ

which can be transformed into linear optimisation and solved by
the interior point method (Chen et al., 1998; Candes and Tao,

2005). Because the objective function of equation 3 is non-
differentiable at origin, it cannot be solved by the conjugate
gradient method and Newton-type methods directly. Hence,
researchers have proposed to solve the unconstrained form of
equation 3:

min
����As� b

����2
2
þ l

����s����
1
; ð4Þ

using for example the IST and FISTA methods, but the
regularisation parameter l should be adjusted carefully.
Another strategy to overcome the non-differentiability of
equation 3 is replacing the L1 norm by its smooth
approximations, which can be called the smooth L1 method.
Thus, equation 3 can be changed into

minFðsÞs:t:As ¼ b; ð5Þ
where F(s) is a smooth approximation of the L1 norm. In the
following, some smooth L1 norm functions are discussed and
analysed.
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Comparison of smooth L1 norm functions

Smooth L1 norm functions are smooth approximations of the L1

norm which are separable and can be written as F(s)=
P

i = 1
N f(si),

sowe just need to analyse the 1D case f(s), where s is a scalar. The
first function we discuss is

f eðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ e

p
ð6Þ

Asacontinuous, convex anddifferential function (Wanget al.,
2011), it approximates to |s| very well when e is very small.
Figure 1a plots this function with e= 0.0001. However, it is not
zero exactly at the original point; a magnified view (Figure 1b)
shows the deficiency clearly. This may affect the sparsity of
solutions.

The second function is

f �ðsÞ ¼
1
�
½lnð1þ e��sÞ þ lnð1þ e�sÞ�; ð7Þ

which approximates to |s| very well when y is large enough. This
function is convex and differential (Chen and Mangasarian,

1996). A plot of it is given in Figure 2a with y= 10 000.
Figure 2b is a magnified view of Figure 2a. As with
Figure 1b, it is also non-zero at the original point.

Another familiar function is the Huber function:

f HuberðsÞ ¼
s2=2a; if jsj � a��s��� a=2; else jsj > a

(
: ð8Þ

In equation 8, a is called a super-parameter. The Huber
function is smooth everywhere and approaches to |s| extremely
wellwhena turns to zero (Bube andNemeth, 2007). It is plotted in
Figure 3awith a= 0.0001; a magnified view shows that it equals
zero exactly at theoriginal point. TheHuber function is ahybridof
the L1 norm and the L2 norm; it behaves like the L2 norm for small
a and like the L1 norm for large a. The smooth transition from L2

norm toL1 normbehaviour is controlled bya.Huber functions are
not new in geophysical inverse problems; Sacchi used the
Cauchy function and Huber functions for deconvolution to get
sparse reflectivity series (Sacchi, 1997). Here, we take it as a
measurement to get sparse solutions of seismic interpolation.
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Based on the above discussions, some conclusions can be
made: (1) A super-parameter exists in each function to control the
approximation to |s|, and they are all differential; (2) fe(s) and fy(x)
are not exactly zero at the original point, while fHuber(s) equals
zero at the original point and can approach to the L1 norm better
for given proper parameters. Therefore, fHuber(s) is chosen as the
L1 norm approximation. Rewriting equation 5 using the fHuber(s)
constraint yields

minFðsÞ :¼
XN
i¼1

f HuberðsiÞ s:t:As ¼ b: ð9Þ

Equation 9 is always transformed into an unconstraint
problem, in which the regularisation factor should be chosen
carefully. In order to avoid the regularisation factor, the gradient
projection method, which is a very efficient strategy, is used to
solve the constrained optimisations.

Gradient projectionmethod for smooth L1 normoptimisation

Since equation 2 is underdetermined,s= {s|As= b} is a convex
set, thus equation 9 can be solved by a convex set projection
method. A gradient projection algorithm for equation 9 is
designated as follows:

Algorithm
Step1.Give themaximumiterationL, theparametera = 0.0001,
k= 0, and the initial solution s0.
Step 2. Solve the gradient rF(sk). If the stopping criterion is
satisfied, go to Step 4; otherwise, give a trial iteration
sk + 1
pre = sk –mrF(sk), where m is the step length (which can
be solved by back-tracing method).
Step 3. Update the iteration point: sk+ 1 = sk+ 1

pre –Ps(sk + 1
pre )

(Ps(sk + 1
pre ) i.e. projection onto s= {s|As= b}), let sk = sk + 1,

k= k+ 1, and return to Step 2.
Step 4. Give the final solution: s= sk.
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We choose the stopping criterion as the discrepancy principle
(Wang et al., 2011). The initial solution is s=A*b, whereA* is the
Hermitian transpose of A.

The main computations of this algorithm are focused on Step
3, because the projection in Step 3, Ps(sk + 1

pre ) =A*(AA*)–1

(Ask + 1
pre – b), contains a curvelet transform, an inverse curvelet

and a large-scale matrix inversion. However, if the inversion of
AA* can be omitted, the algorithm will enhance computation
efficiency significantly. A curvelet transform as the sparse
transform is selected here, because it is not only an excellent
sparse transformbut also a tight frame, basedonwhichAA* canbe
simplified to the identify matrix. Then, projections can be
simplified to Ps(sk+ 1

pre ) =A*(Ask+ 1
pre – b). Properties of the curvelet

transform will be introduced briefly in the following section.
Cao et al. (2012) proposed a smooth L0 method for seismic

interpolation; however, there are two-level iterations in the
smooth L0 method, and parameters of smooth L0 function and
iteration should be changed carefully to prevent getting local
solutions. The gradient projection method presented above only
needs one-level iteration and the super-parameter a of the Huber
function is fixed and need not be adjusted.

The curvelet transform

Because of the excellent sparse expression ability of curvelet for
seismic data, it has received extensive application in seismic
processing. As an anisotropic, multi-directional, multi-scale and
local frame (Candes, 2006; Candes and Donoho, 2004), the
curvelet transform has been proved to be the sparsest among
the existing transforms for seismic data (Herrmann and
Hennenfent, 2008). The discrete form of curvelet can be
written as s=Yx, where s is a vector denoting the discrete set
of curvelet coefficients, x is the discrete form of the data, andY is
the curvelet transformmatrix. Besides the excellent compression
for seismic data, the curvelet transform creates a tight frame by
wrapping, which can perfectly reconstruct data after
decomposition by applying the transpose of the curvelet
transform; that is, x=Y*Yx for an arbitrary finite-energy
vector x (Herrmann and Hennenfent, 2008), thus Y*Yx= I.
Based on this property, AA* =FY*YF= I. This property can
then be used to accelerate the algorithm significantly.

Numerical examples

The performance of the proposedmethod is evaluated on two real
data experiments, though more examples performed can also
show similar results. A shot data experiment is given at first to
prove its ability for field data, then application on post-stack
seismic data also verify the validity of the proposed method. To
further demonstrate the efficiency of the proposed method,
comparisons are conductedwith the FISTA andSPGL1methods.

Shot data experiment

A shot data interpolation is implemented to test the ability of the
proposed smoothL1method.The receiver interval is 12.5m in the
shot gather with a 2ms time sampling interval. The dataset
contains 115 traces with 600 time samples per trace. The
incomplete acquisition was simulated by a random sample of

69 traces. The original data is given in Figure 4a, and the sampled
data is given in Figure 4b. We made experiments by using the
smooth L1, FISTA (Beck and Teboulle, 2009) and SPGL1
methods (van den Berg and Friedlander, 2009). Some
parameters in each algorithm are listed below: the max-
iteration number is 15 for the smooth L1 method, 20 for
FISTA, and 30 for SPGL1. Based on the above parameters,
these methods can obtain similar results with much different
CPU times. The CPU time, signal-to-noise ratio (SNR) and
relative error are listed in Table 1, where the SNR is defined as:

SNR ¼ 10 log10

����dorig����22����dorig � drest
����2
2

where dorig is the original data and drest is the restored data, and the
relative error is defined as����dorig � drest

����
2����dorig����2

The interpolation result by the smoothL1 is given inFigure 5a and
the difference between it and the original data is shown in
Figure 5b; results from the FISTA method and its difference
from the original data are shown in Figure 6; interpolation using
the SPGL1method and the difference between the restoration and
the original data are shown in Figure 7. From Table 1, we can
conclude that the smooth L1 method is faster than FISTA and
approximately one third of the CPU time of the SPGL1 method.

Post-stack seismic data experiment

We further examine the efficiency of the smooth L1 method with
post-stack data. A post-stack section is given in Figure 8a which
consists of 130 traces with a trace interval of 25m and 401 time
samples pre-trace with 2ms as the time interval. The subsampled
gather is shown in Figure 8b with 40% of the original traces
randomly deleted. The maximum iteration number of the smooth
L1method is20; the interpolationof the smoothL1methodand the
difference between the interpolation and the original data are
displayed in Figure 9, while the interpolation results using the
FISTAwith amaximum iteration of 30 and its difference from the
original data are shown in Figure 10. Interpolation based on
SPGL1with amaximum iteration of 50 and its difference from the
original data are shown in Figure 11. The CPU time, SNR and
relative error of thesemethods are shown inTable 2. These results
also show that, when the interpolation results are almost the same,
the smooth L1 method is faster than the FISTA method and
approximately one third of the CPU time of the SPGL1 method.
Thus, the proposed method is efficient and can reduce the
computational time and cost significantly. We also performed
several examples and all of them can verify the efficiency of the
smooth L1method; these are not listed here because of the limited
space.

Conclusion

In this paper, a fast gradient projection method for smooth L1

optimisation based on tight frame property of curvelet is
proposed. Some smooth functions as L1 norm approximation
are presented and analysed, then the Huber function is chosen as
the best approximation to the L1 norm among those listed. The
tight framepropertywith bound1of the curvelet transform is used
to accelerate the method. The proposed method overcomes the
non-differentiability of the L1 norm and does not need to choose a
classical regularisation parameter. Comparison of the proposed
method with some state-of-the-art sparse methods, such as the
FISTA and SPGL1 methods, by experiments indicate that the

Table 2. Comparison of smooth L1, FISTA and SPGL1 methods for
post-stack data

Smooth L1 FISTA SPGL1

CPU time (s) 56 80 163
SNR (db) 22.1805 22.7094 22.9518
Relative error 0.0778 0.0732 0.0712
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proposed method is the fastest among the three methods.
Therefore, it can be used to improve the efficiency of seismic
processing, especially for high dimensional seismic data
interpolation.

The proposed method is based on the curvelet transform to
obtain the interpolated seismic data which is a redundancy
transform and is time consuming, therefore unsuitable for large
gaps. Future research on more efficient sparse transforms (Trad,
2009), especially efficient high dimensional transforms, is
required. The L1 norm constraint and its smooth
approximation are discussed in this paper and it is found not to
be the best sparse constraint. Therefore, other sparse constraints,
like the Lp norm (0 <P< 1) should be investigated further.
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