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Abstract

To study the temporal and spatial changes in paleofires over the Chinese Loess Plateau, black carbon concentrations were

analyzed on the loess–paleosol samples from three sections along a north–south transect. Using the orbitally tuned time scales

of the sections, the black carbon mass sedimentation rates (BCMSR) were calculated. Results show that in the last two glacial

cycles, the BCMSR values in glacial periods are 2–3 times higher than in interglacial periods, and the BCMSR variability has a

relatively strong precession-associated 23 ky period, suggesting that the glacial cold–dry climate conditions were apt to induce

natural fires over the Loess Plateau. Comparison of the BCMSR records among the three loess sections demonstrates that

natural fire occurrence was much more intensive and frequent in the northern Loess Plateau than in the southern part, coinciding

with the previous conclusion that the northern Plateau has experienced a drier climate regime in both glacial and interglacial

periods. The substantial increase in BCMSR of the upper S0 relative to the lower S0 at Lingtai and Weinan indicates that human

activities have exerted a significant influence on fire regimes in the middle and southern Loess Plateau during late Holocene due

to the relatively intensive agricultural usage of land.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Black carbon; Chinese Loess Plateau; Last two glacial cycles; Paleofires
1. Introduction

In recent years, natural fire history has attracted an

increasing attention of scientists involved in studies of

global and regional climate changes, since reconstruc-

tion of changes in paleofires would provide an
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opportunity to understand the interaction between

climate, vegetation and fire events in geological past.

Basically, natural fires would leave the combustion

products such as charcoal, elemental carbon, poly-

cyclic aromatic hydrocarbons and glucosan in the

surroundings, which can be subsequently preserved in

various sediments (e.g., Goldberg, 1985; Zepp and

Macko, 1997; Elias et al., 2001; Scott, 2003). The

concentration and fluxes of the combustion products

detected from the sediments can be thus used to
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indicate paleofire occurrence and intensity (e.g.,

Goldberg, 1985; Zepp and Macko, 1997; Elias et

al., 2001; Scott, 2003).

To reconstruct natural fire history, measurements

of charcoal abundance, based on point-counting

estimation under a microscope, are often used.

However, this method proves to be time-consuming

and apt to overestimate the concentration by count-

ing some opaque minerals such as pyrite grains

(Clark, 1983; Renberg, 1984), or underestimate the

concentration by counting merely certain particle-

size range of charcoal (Clark and Patterson, 1997).

To overcome this shortage, researchers have recently

developed thermal (Kuhibusch, 1995) and chemical

methods (Winkler, 1985; Wolbach and Anders, 1989;

Rose, 1990; Emiliani et al., 1991; Lim and Cachier,

1996; Bird and Grocke, 1997) to document changes

in black carbon (BC) concentrations, which are

currently employed as a proxy indicator of paleofire

occurrence (Lim and Cachier, 1996; Schmidt and

Noack, 2000).

The term black carbon is used to describe a

relatively inert and ubiquitous form of carbon,

comprising a range of materials from char and

charcoal to element or graphite carbon produced by

the incomplete combustion of fossil fuels and biomass

(Goldberg, 1985; Schmidt and Noack, 2000). Due to

its inertness, the BC in soils, lacustrine and marine

sediments and ice can persist over a long period of

time. So BC signatures in geological deposits can be

used as evidence of natural fires happened in their

surroundings. To date, most of the BC records are

derived from marine and lacustrine sediments. How-

ever, interpretation of the BC signatures registered in

these sediments appears to be often difficult because

of their indefinite origins and a relatively long

residence time. For instance, studies have shown that

the BC particles can remain in the intermediate pools

for more than 10,000 years before they are finally

trapped in marine deposits (Masiello and Druffel,

1998). Comparatively, BC particles deposited in

terrestrial sediments are expected to have a shorter

atmospheric lifetime, implying that they may be more

accurate to reflect paleofires.

Loess deposits coherently mantle an area of about

440,000 km2 in the Loess Plateau of north–central

China (Liu, 1985). Loess strata are built up by silt and

clay particles transported by the winter monsoonal
wind from the deserts north and northwest to the

Loess Plateau (An et al., 1991a). Observations have

shown that loess particles can remain in air usually no

longer than a week, and stratigraphical correlation

between far-located loess sections has shown the

completeness and continuity of loess deposition and

preservation (Ding et al., 2002). These suggest that

the Chinese loess deposits may be an ideal reservoir to

register natural fire changes over this semi-arid region.

In this study, the BC contents in three loess sections

were analyzed, with the objective to investigate the

spatial-temporal changes in natural fires over the last

two glacial cycles.
2. Setting and stratigraphy

The selected three loess sections are located,

respectively near Lijiayuan (3687V0WN, 104851V
30WE), Lingtai (3580V33WN, 10783033WE) and Weinan

(34820V14WN, 109829V45WE) (Fig. 1). At present, both
the mean annual temperature and precipitation show a

clear northwestward decrease (~13.3 8C to 7 8C in

temperature, ~600 to 250 mm in precipitation) along

the transect. The precipitation is brought mainly by

the southeasterly summer monsoon. The rainfall in

summer season (JJAS) accounts for 56%, 66% and

70% of the annual precipitation, respectively at

Weinan, Lingtai and Lijiayuan. During winter season,

the climate of this region is cold and dry because of

the dominance of the northwesterly winter monsoon

originated in the Siberian area. Studies of proxy data

have shown that this wind system have persisted in

the Loess Plateau over the entire Quaternary period

(An et al., 1990; Ding et al., 2002).

All the three sections consist of the loess–soil units

of S0, L1, S1, L2 and S2, and are stratigraphically

correlative in the field. The stratigraphic division and

correlation of the sections is illustrated in Fig. 2, on

the basis of the grain-size records (Ding et al., 1999)

and field observations. The Holocene soil of S0, with

a thickness of more than 1 m, is well-preserved in the

sections, which is characterized by relatively high

organic matter content. In the Loess Plateau, the last

glacial loess deposit (L1) generally contains two

weakly developed soils (L1-2 and L1-4) in the middle

portion, which formed during marine isotope stage 3,

as indicated by TL dating results (Liu, 1985; Lu et al.,
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Fig. 1. Schematic map showing the localities of the studied sections which are labeled as five-angle stars. The arrow indicates the dominant

subaerial wind direction in winter seasons, coinciding with the observed decrease in grain size and thickness of loess. The desert (dotted) and

mountains (black areas) around and within the Loess Plateau are shown. The solid square in the inset map shows the locality of the Loess

Plateau in continental China. The isohyets (dashed lines) are averaged values over the 32 years (1970–2001).
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1987; Kukla and An, 1989). The two soils are only

clearly seen at Weinan and Lingtai. The upper and

lower parts of L1 are two typical loess layers (L1-1

and L1-5), which correlate, respectively to isotope

stages 2 and 4. The S1 soil formed in the last

interglacial period, which is among the best-devel-

oped soils of the entire Pleistocene on the Plateau. The

S1 soil at Lijiayuan, with a thickness of 6.2 m, can be

subdivided into three individual soils and two loess

horizons (Fig. 2).

The thickness of the penultimate glacial loess unit

(L2) is 8.6 m, 7.0 m and 15.6 m, respectively at

Weinan, Lingtai and Lijiayuan. In the Weinan and

Lingtai sections, there are also two weakly devel-

oped soils (L2-2 and L2-4) in the middle of L2. The

S2 soil developed during the oxygen isotope stage of

7 and is usually composed of two separated soils

named S2-1 and S2-2. In this study, only the upper

soil (S2-1) could be traced at Lijiayuan because of

slumping.

The loess–paleosol sequence above S2 at Weinan,

Lingtai and Lijiayuan is 25.4 m, 21.1 m and 43.3 m

thick, respectively. The similarity of the grain-size
curves (Fig. 2) strongly suggests the completeness of

these loess records. We took samples at an interval of

8–10 cm, with a total of 946 samples collected from

the three sections. This sample spacing is designed to

resolve the paleofire variability on orbital time scales.
3. Methods

In this study, we use the chemical method

developed by Lim and Cachier (1996) to extract the

black carbon in the loess–soil samples. In brief, the

carbonates and part of silicates in the samples were

removed by the acid treatment with HCl (3 mol/L) and

HF (10 mol/L)/HCl (1 mol/L) in sequence. The

treated samples were then oxidized by a solution of

0.1 mol/L K2Cr2O7/2 mol/L H2SO4 at 55 8C for 60 h

to remove soluble organic matter and kerogen. The

remaining refractory carbon in the residues is called

black carbon, and includes charcoal and atmospheric

BC particles (Lim and Cachier, 1996).

To assess the possible contribution of naturally

burnt oil and coal deposits to the remaining
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Fig. 2. Stratigraphic subdivision and median grain-size records of Lijiayuan, Lingtai and Weinan sections. The grain-size data are cited from

Ding et al. (2001).
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refractory carbon, scanning electron microscope

(SEM) observations were made on 36 of the 946

samples. The selected SEM photographs are shown

in Fig. 3. Previous studies (Griffin and Goldberg,

1979, 1981) have demonstrated that the charcoal or

element carbon derived from oil burning is spherical

(cenospheres) with a delicate, convoluted, layered

structure, while coal combustion carbon particles are

spheroidal with a robust network structure. How-

ever, the carbon particles produced by biomass

burning are commonly elongate with a length to

width ratio of over 3.0 and these particles often

display the fine details of plant cellular structure. As

seen in Fig. 3, the BC particles extracted from the

loess samples are predominantly elongate-prismatic
or irregular in shape with various plant cellular

structures. Few particles with spherical shapes and

porous structures are found. Accordingly, the BC

particles in the loess deposits have been produced

dominantly by biomass burning, with an insignif-

icant contribution of naturally burnt oil and coal

deposits.

The black carbon content in the residues was

determined using a Heraeus CHN-O Rapid elemental

analyzer. The combustion temperature was set at 960

8C. Sextuplicate determinations on one sample by

the above chemical treatment procedure showed that

the relative error was within F3.3% for black carbon

content. For all the samples, duplicates were

analyzed, and each of the data used here is the



Fig. 3. Selected scanning electron microscopic photographs of the isolated BC particles from loess and paleosol samples of Chinese Loess

Plateau. (a) BC particle with elongate/plant structure (Sample No. WN002); (b) small BC particle with irregular shape/layered structure and flat

surface (Sample No. WN002); (c) BC particles with irregular shapes and pitted surfaces (Sample No. WN016); (d) a spherical BC particle with

pleated surface and layered structure (Sample No. LT49); (e) BC particle with elongate/layered structure and flat surface (Sample No. LT137);

(f) BC particle with irregular shape/layered structure (Sample No. LT137); (g) BC particle with prismatic shape/coiled layered and smooth

surface (Sample No. LJY1); (h) BC particle with irregular shape/plant structure (Sample No. LJY1); (i) BC particle with irregularly shaped flake

and uneven surface (Sample No. LJY14.6).
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average of the two measurements with a deviation

bF3%.
4. Results

Changes in BC concentrations at the three sites

are shown in Fig. 4, and compared with the grain-

size records. In the sections, BC concentrations range

from 0.041% to 0.572%. A most striking feature is

that BC concentrations vary frequently on relatively

short time scales, in contrast to the obvious glacial–
interglacial variability of the grain-size records. The

averaged BC concentration at Lijiayuan, Lingtai and

Weinan is 0.184%, 0.178%, and 0.124%, respec-

tively, and shows a decrease from north to south

(Fig. 4).

Because the dust deposition rate varies largely at

both spatial and temporal scales over the Loess

Plateau, the BC concentration records cannot be

directly used to describe the paleofire history. This

means that the BC concentration records should be

transferred into BC mass sedimentation records by

development of loess chronology. Previous studies
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(Liu, 1985; An et al., 1991b; Ding et al., 1992)

have shown that the particle sizes in loess horizons

are consistently larger than in soils, in response

essentially to the orbital-scale variations in the

intensity of the winter monsoon wind which is

the major agent transporting the dust. A recent

study (Ding et al., 2001) has calculated, by tuning

the grain-size records to the orbital parameters of

the Earth, the changes in sedimentation rates of

eolian dust for the three sections. Based on the

orbital time scales, we calculated the BC mass
sedimentation rate (BCMSR) using the following

equation

BCMSR ¼ CBC %ð Þ � BDloess g=cm3
� �

� SRdust cm=kyð Þ

where CBC represents BC concentration, BDloess is

the bulk density of loess or paleosol, and SRdust

denotes dust sedimentation rate. Since there are no

considerable spatial and temporal differences in bulk



Table 1

Bulk densities used in this study

Layer S0 L1 S1 L2 S2

Bulk density (g/cm3) 1.40 1.48 1.65 1.49 1.69
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densities for both loess and paleosol horizons over the

Loess Plateau, we here adopted the average bulk

density of each horizon provided by Liu (1985)

(Table 1).

The resulting BCMSR records of the three sections

are shown in Fig. 5, in relation to the grain-size time
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clear southward decrease. The average BCMSR in the

interglacial periods is generally about 2–3 times lower

than in the glacial periods; about 0.03 g/cm2/ky at

Lijiayuan and about 0.015 g/cm2/ky at Lingtai and

Weinan. In addition to the glacial–interglacial varia-

bility, the BCMSR values also vary notably within the

two glacial periods. For instance, the BCMSR in the

stadial periods of L1-1, L1-5, L2-1, L2-3 and L2-5 is

much higher than in the interstadial periods of L1-2,

L1-4, L2-2 and L2-4 (Fig. 5).

To examine the periodicities of BCMSR variations,

we conducted maximum entropy spectral analyses on

the three BCMSR time series. Results (Fig. 6) show
0 0.02 0.04 0.06 0.08 0.1

0

2

4

6

8

0

4

8

12

16

20

0

2

4

6

8

Frequency/kyr

S
pe

ct
ru

m
 d

en
si

ty

Lijiayuan

Lingtai

Weinan

23 kyr

23 kyr

23 kyr

67 kyr

147 kyr

167 kyr

Fig. 6. Periodicities of the BCMSR time series of the studied

sections, using the Maximum entropy spectrum method.
that there is a strong variance at about 23 ky in all the

three records, which may be associated with the

orbital precession changes, as envisaged in the

stadial–interstadial variability of the BCMSR records

(Fig. 5). There is also a periodicity of about 67 ky in

the Weinan record and a periodicity of about 150 ky in

the Lijiayuan and Lingtai records. Since our records

are relatively short, these low frequency variations

may not have meaningful implications.
5. Discussion and conclusions

Our results show that black carbon mass sed-

imentation rates over the Loess Plateau clearly

display changes at orbital time scales, and the

BCMSR values during glacial periods are 2–3 times

higher than during interglacial periods. Within the

glacial periods, BCMSR in stadial periods is much

higher than in interstadial periods, which is evidently

associated with the 23 ky period of changes in the

orbital precession. As the Chinese loess is trans-

ported by wind from the deserts north and northwest

to the Loess Plateau (Liu, 1985), it is likely that part

of the BC particles in the records have been

transported with the dust. To assess this possible

contribution, we employed the sample with the

lowest BC concentration among the sections as the

upper limit of BC content transported with dust. This

yields a datum of 0.041% (at depth of 1.42 m at

Weinan section), being 22.28%, 23.03% and 33.06%

of the averaged BC content, respectively at

Lijiayuan, Lingtai and Weinan, thereby indicating

the major contribution of local fires to the loess BC

concentrations.

In previous studies, Van der Kaars et al. (2000)

found, based on the records derived from core SHI-

9014 of Banda sea, that the charcoal and elemental

carbon concentrations in glacial periods are higher

than in interglacial periods, a pattern being the same

as our records. However, Bird and Cali (1998)

reported that more frequent natural fires in sub-

Saharan Africa occurred during the transition from

interglacial to glacial periods, suggesting that the

destabilized climate conditions of the periods be apt to

induce natural fires. These findings show that there is

a regional difference in fire regimes in the world

during the late Pleistocene.
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Recently, many efforts have been made to recon-

struct the paleo-vegetation history of the Loess

Plateau (Liu et al., 1996; Sun et al., 1997; Li et al.,

2003). A conclusion made on the basis of pollen

analyses is that the Loess Plateau was covered by an

Artemisia-dominated grassland vegetation both dur-

ing glacial and interglacial periods, although mois-

ture-loving species increase to some degree in

interglacial periods. Even at Weinan, one wettest

location of the Plateau, pollen results still indicate a

succession of steppe and meadow-steppe environment

during the last glacial cycle (Sun et al., 1997). This

conclusion is also corroborated by carbon isotope

analyses of organic matter. Recently, Gu et al. (2003)

reported d13C results of five loess sections including

the Weinan and Lingtai section, and concluded that

grassland vegetation cover has been dominant on the

Loess Plateau during the last glacial cycle. Accord-

ingly, our BC records may be regarded as an

indication of changes in grassland burning on the

Plateau.

The more frequent occurrence of natural fires in the

Loess Plateau during glacial periods may be explained

by a synergistic influence of climate conditions and

fuel accumulation. It has long been known that the

climate of the Plateau was very dry and cold during

the glacial periods of the late Pleistocene (Liu, 1985).

Under such conditions, the biomass litter tends to dry

quickly and decompose slowly, leading to a built-up

of a thick fuel layer on the surface, and subsequently

to more intensive and frequent natural fires that may

be started by lightning strikes (e.g., Scott et al., 2000).

A spatial comparison of the BCMSR records (Fig.

5) shows that natural fires in the northern part of the

Loess Plateau have been more intensive than in the

southern part during both glacial and interglacial

periods. This may be explained by a relatively steep

gradient of precipitation over the Loess Plateau under

the influence of Asian monsoon climate (see Fig. 1).

Various proxy records from loess sediments have

demonstrated that the monsoonal rainfall over the

Plateau significantly decreases from south to north

both in glacial and interglacial periods, coinciding

with today’s pattern (Liu and Ding, 1998). Obviously,

this precipitation pattern has exerted a significant

control on paleofire occurrence. The precessional-

associated 23 ky period of BCMSR changes may also

be related to the monsoon system. The monsoon
originates in the low latitudes where changes in the

orbital precession exert a significant control on

variations in insolation values (Ruddiman, 2000).

Changes in precession-modulated monsoon strength

will in turn induce wet–dry oscillation in the Loess

Plateau, thereby controlling the intensity and fre-

quency of biomass burning there. A study by Haberle

and Ledru (2001) also concluded that fluctuations in

tropical biomass burning were partly controlled by

orbital precession forcing.

The more intensive natural fires in the northern

Plateau may imply that even in the glacial periods,

this place was still covered by relatively dense

vegetation. This is consistent with the observation

that thick, complete dust deposits have continuously

accumulated during glacial periods on the northern

Loess Plateau (Liu, 1985), as a result of dense

vegetation cover trapping falling dust.

Intensive and extensive human activity has had a

relatively long history in the Loess Plateau. It is

therefore interesting to assess the anthropogenic

impact on fire regimes, based on the BC records of

the S0 Holocene soil. After cultivation for several

thousand years, the S0 soil on the Loess Plateau can

be generally divided into two parts: the upper

cultivated soil and the lower undisturbed soil. Fire

regime difference of human period with pre-human

period may be examined by comparing BC mass

sedimentation rates between the two soil horizons.

The averaged BC mass sedimentation rate of the

upper and lower soils is 0.060 and 0.074 g/cm2/ky at

Lijiayuan, 0.047 and 0.036 g/cm2/ky at Lingtai, and

0.012 and 0.008 g/cm2/ky at Weinan, respectively. An

obvious northward increase in BCMSR during both

the human and pre-human periods indicates the first-

order control of humidity on the occurrence of natural

fires. Lijiayuan is located at the northwestern edge of

the Loess Plateau with a mean annual precipitation

below 300 mm (Fig. 1) and a low population density.

In the Lijiayuan section, no increase of BCMSR in the

upper part of S0 is observed. However, we do see the

influence of human activity on fire regimes, as

suggested by the substantial increase in BCMSR of

the upper soil relative to the lower soil at Lingtai and

Weinan. This may be explained by the relatively

intensive agricultural usage of land in the middle and

southern Loess Plateau where climatic conditions are

more suitable for agriculture. In addition, BCMSR is
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exceptionally high for the entire Holocene soil at

Lingtai, also suggesting human-induced increase in

fires. This anthropogenic mechanism is also docu-

mented in the records derived from both marine and

lake sediments (Bird and Cali, 1998; Moreno, 2000).
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