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Abstract Quantitative remote sensing is an appropriate way to estimate structural parameters
and spectral component signatures of Earth surface cover type. Since the real physical system
that couples the atmosphere, water and the land surface is very complicated and should be a
continuous process, sometimes it requires a comprehensive set of parameters to describe such
a system, so any practical physical model can only be approximated by a mathematical model
which includes only a limited number of the most important parameters that capture the major
variation of the real system.The pivot problem for quantitative remote sensing is the inversion.
Inverse problems are typically ill-posed.The ill-posed nature is characterized by: (C) the solu-
tionmaynot exist; (C) the dimensionof the solution spacemaybe infinite; (C) the solution is
not continuous with variations of the observed signals. These issues exist nearly for all inverse
problems in geoscience and quantitative remote sensing. For example, when the observation
system is band-limited or sampling is poor, i.e., there are too few observations, or directions are
poor located, the inversion process would be underdetermined, which leads to the large condi-
tion number of the normalized system and the significant noise propagation. Hence (C) and
(C) would be the highlight difficulties for quantitative remote sensing inversion. This chapter
will address the theory and methods from the viewpoint that the quantitative remote sensing
inverse problems can be representedby kernel-based operator equations and solved by coupling
regularization and optimization methods.

 Introduction

Bothmodeling andmodel-based inversion are important for quantitative remote sensing. Here,
modeling mainly refers to data modeling, which is a method used to define and analyze data
requirements; model-based inversion mainly refers to using physical or empirically physical
models to infer unknown but interested parameters.Hundreds ofmodels related to atmosphere,
vegetation, and radiationhave been established during past decades.Themodel-based inversion
in geophysical (atmospheric) sciences has been well understood. However, the model-based
inverse problems for Earth surface received much attention by scientists only in recent years.
Compared to modeling, model-based inversion is still in the stage of exploration (Wang et al.
c). This is because that intrinsic difficulties exist in the application of a priori informa-
tion, inverse strategy, and inverse algorithm.The appearance of hyperspectral andmultiangular
remote sensor enhanced the exploration means, and provided us more spectral and spatial
dimension information than before. However, how to utilize these information to solve the
problems faced in quantitative remote sensing to make remote sensing really enter the time of
quantification is still an arduous and urgent task for remote sensing scientists. Remote sens-
ing inversion for different scientific problems in different branch is being paid more and more
attentions in recent years. In a series of international study projections, such as International
Geosphere-Biosphere Programme (IGBP), World Climate Research Programme (WCRP), and
NASA’s Earth Observing System (EOS), remote sensing inversion has become a focal point of
study.

Model-based remote sensing inversions are usually optimization problems with different
constraints. Therefore, how to incorporate the method developed in operation research field
into remote sensing inversion field is very much needed. In quantitative remote sensing, since
the real physical system that couples the atmosphere and the land surface is very complicated
(see >Fig. a) and should be a continuous process, sometimes it requires a comprehensive set of
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parameters to describe such a system, so any practical physical model can only be approximated
by amodel which includes only a limited number of themost important parameters that capture
the major variation of the real system.Generally speaking, a discrete forward model to describe
such a system is in the form

y = h(x, S), ()

where y is single measurement, x is a vector of controllable measurement conditions such as
wave band, viewing direction, time, Sun position, polarization, and the forth, S is a vector of
state parameters of the system approximation, and h is a function which relates x with S, which
is generally nonlinear and continuous.

With the ability of satellite sensors to acquire multiple bands, multiple viewing directions,
and so on, while keeping S essentially the same, we obtain the following nonhomogeneous
equations

y = h(x, S) + n, ()

where y is a vector in ℝ
M , which is an M dimensional measurement space with M values cor-

responding toM different measurement conditions, n ∈ ℝ
M is the vector of random noise with

same vector length M. Assume that there are m undetermined parameters need to be recov-
ered. Clearly, ifM = m, () is a determined system, so it is not difficult to develop some suitable
algorithms to solve it. If more observations can be collected than the existing parameters in the
model (Verstraete et al. ), i.e., M > m, the system () is over determined. In this situation,
the traditional solution does not exist. We must define its solution in some other meaning, for
example, the least squares error (LSE) solution. However as Li in (Li et al. ) pointed out that,
“for physical modelswith about ten parameters (single band), it is questionable whether remote
sensing inversion can be an over determined one in the foreseeable future.”Therefore, the inver-
sion problems in geosciences seem to be always underdetermined in some sense. Nevertheless,
the underdetermined system in some cases, can be always converted to an overdetermined one
by utilizing multiangular remote sensing data or by accumulating some a priori knowledge (Li
et al. ).

Developed methods in literature for quantitative remote sensing inversion are mainly sta-
tistical methods with several variations from Bayesian inference. In this chapter, using kernel
expression, we analyze from algebraic point of view, about the solution theory andmethods for
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quantitative remote sensing inverse problems. The kernels mentioned in this chapter mainly
refer to integral kernel operators (characterized by integral kernel functions) or discrete linear
operators (characterized by finite rank matrices). It is closely related with the kernels of linear
functional analysis, Hilbert space theory, and spectral theory. In particular, we present regu-
larizing retrieval of parameters with a posteriori choice of regularization parameters, several
cases of choosing scale/weighting matrices to the unknowns, numerically truncated singular
value decomposition (NTSVD), nonsmooth inversion in lp space and advanced optimization
techniques. These methods, as far as we know, are novel to literature in Earth science.

The outline of this chapter is as follows: in > Sect. , we list three typical kernel-based
remote sensing inverse problems. One is the linear kernel-based bidirectional reflectance distri-
bution function (BRDF) model inverse problem, which is of great importance for land surface
parameters retrieval; the other is the backscattering problem for Lidar sensing; and the last
one is aerosol particle size distributions from optical transmission or scattering measurements,
which is a long time existed problem and still an important topic today. In > Sect. , the reg-
ularization theory and solution techniques for ill-posed quantitative remote sensing inverse
problems are described. > Section . introduces the conception of well-posed problems and
ill-posed problems; > Sect. . discusses about the constrained optimization; > Sect. .
fully extends the Tikhonov regularization; > Sect. . discusses about the direct regulariza-
tion methods for equality-constrained problem; then in > Sect. ., the regularization scheme
formulated in the Bayesian statistical inference is introduced. In > Sect. , the optimization
theory and solution methods are discussed for finding an optimized solution of a minimiza-
tion model. > Section . talks about sparse and nonsmooth inversion in l space; > Sect. .
introduces Newton-type and gradient-type methods. In > Sect. ., the detailed regularizing
solutionmethods for retrieval of ill-posed land surface parameters are discussed. In > Sect. .,
the results for retrieval of backscatter cross-sections by Tikhonov regularization are displayed.
In > Sect. ., the regularization and optimization methods for recovering aerosol particle size
distribution functions are presented. Finally, in > Sect. , some concluding remarks are given.

 Typical Inverse Problems in Earth Science

Many inverse problems in geophysics are kernel-based, e.g., problems in seismic exploration
and gravimetry. I do not introduce these solid Earth problems in the present chapter, instead,
I mainly focus on Earth surface problems. The kernel methods can increase the accuracy
of remote-sensing data processing, including specific land-cover identification, biophysical
parameter estimation, and feature extraction (Camps-Valls ; Wang et al. c). I intro-
duce three typical kernel-based inverse problems in geoscience, one belongs to the atmospheric
problem, another two belong to the Earth surface problems.

. Land Surface Parameter Retrieval Problem

As is well-known, the anisotropy of the land surface can be best described by the BRDF. With
the progress of themultiangular remote sensing, it seems that the BRDFmodels can be inverted
to estimate structural parameters and spectral component signatures of Earth surface cover
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type (see Strahler et al. ; Roujean et al. ). The state of the art of BRDF is the use of the
linear kernel-driven models, mathematically described as the linear combination of the
isotropic kernel, volume scattering kernel, and geometric optics kernel.The information extrac-
tion on the terrestrial biosphere and other problems for retrieval of land surface albedos from
satellite remote sensing have been considered by many authors in recent years, see for instance
the survey papers on the kernel-based BRDF models by (Pokrovsky and Roujean (),
Pokrovsky et al. (), Pokrovsky and Roujean (), and references therein. The compu-
tational stability is characterized by the algebraic operator spectrum of the kernel-matrix and
the observation errors. Therefore, the retrieval of the model coefficients is of great importance
for computation of the land surface albedos.

The linear kernel-based BRDF model can be described as follows (Roujean et al. ):

fiso + kvol(ti , tv , ϕ) fvol + kgeo(ti , tv , ϕ) fgeo = r(ti , tv , ϕ), ()

where r is the bidirectional reflectance; the kernels kvol and kgeo are so-called kernels, that is,
known functions of illumination and of viewing geometry which describe volume and geomet-
ric scattering, respectively; ti and tv are the zenith angle of the solar direction and the zenith
angle of the view direction respectively; ϕ is the relative azimuth of sun and view direction;
and fiso, fvol, and fgeo are three unknown parameters to be adjusted to fit observations. The-
oretically, fiso, fvol, and fgeo are closely related to the biomass such as leaf area index (LAI),
Lambertian reflectance, sunlit crown reflectance, and viewing and solar angles. The vital task
then is to retrieve appropriate values of the three parameters.

Generally speaking, the BRDF model includes kernels of many types. However, it was
demonstrated that the combination of RossThick (kvol) and LiSparse (kgeo) kernels had the
best overall ability to fit BRDF measurements and to extrapolate BRDF and albedo (see, e.g.,
Wanner et al. ; Li et al. ; Privette et al. ). A suitable expression for the RossThick
kernel kvol was derived by Roujean et al. (). It is reported that the LiTransit kernel kTransit ,
instead of the kernel kgeo, is more robust and stable than LiSparse non-reciprocal kernel and
the reciprocal LiSparse kernel ksparse (LiSparseR) where the LiTransit kernel and the LiSparse

kernel are related by kTransit = {
ksparse, B ≤ ,

B ksparse , B > , and B is given by B := B(ti , tv , ϕ) =

−O(ti , tv , ϕ) + sec t′i + sec t′v in Li et al. (). More detailed explanation about O and t′ in the
definition of kTransit can be found in Wanner et al. ().

To use the combined linear kernel model, a key issue is to numerically solve the inverse
model in a stable way. However, it is difficult to do in practical applications due to ill-posed
nature of the inverse problem. So far, statistical methods and algebraic methods have been
developed for solving this inverse problem, e.g., Pokrovsky andRoujean (, ) andWang
et al. (a, ).We will describe thesemethods and introduce recent advances in following
paragraphs.

. Backscatter Cross-Section Inversionwith Lidar

Airborne laser scanning (ALS) is an active remote sensing techniquewhich is also often referred
to as Lidar or laser radar. Due to the increasing availability of sensors, ALS has been receiving
increasing attention in recent years (e.g., see Wagner et al. ). In ALS a laser emits short
infrared pulses toward the Earth’s surface and a photodiode records the backscattered echo.



Quantitative Remote Sensing Inversion in Earth Science: Theory and Numerical Treatment  

With each scan, measurements are taken of the round trip time of the laser pulse, the received
echo power and of the beam angle in the locator’s coordinate system. The round-trip time of
the laser pulse allows calculating the range (distance) between the laser scanner and the object
that generated the backscattered echo. Thereby, information about the geometric structure of
the Earth’s surface is obtained. The received power provides information about the scattering
properties of the targets, which can be exploited for object classification and for modeling of
the scattering properties.

The latest generation of ALS systems does not only record a discrete number of echoes
but also digitizes the whole waveform of the reference pulse and the backscattered echoes. In
this way, besides the range further echo parameters can be determined. The retrieval of the
backscatter cross-section is of great interest in full-waveform ALS. Since it is calculated by
deconvolution, its determination is an ill-posed problem in a general sense.

ALS utilizes a measurement principle firstly strongly related to radar remote sensing (see
> Fig. b). The fundamental relation to explain the signal strength in both techniques is the
radar equation (Wagner et al. ):

Pr(t) =
D

r

πRβt
Pt (t −

R
vg

) σ , ()

where t is the time, R is the range, Dr is the aperture diameter of the receiver optics, βt is the
transmitter beam width, Pt is the transmitted power of the laser, and σ denotes the scattering
cross-section. The time delay is equal to t′ = R/vg where vg is the group velocity of the laser
pulse in the atmosphere.

Taking the occurrence of multiple scatterers into account and regarding the impulse
response Γ(t) of the system’s receiver, we get (Wagner et al. )

Pr(t) =
N

∑
i=

D
r

πRβt
Pt(t) ⋆ σ ′i (t) ⋆ Γ(t), ()

where⋆ denotes the convolution operator. Since convolution is commutative, we can set Pt(t)⋆

σ ′i (t) ⋆ Γ(t) = Pt(t) ⋆ Γ(t) ⋆ σ ′i (t) = S(t) ⋆ σ ′i (t), i.e., it is possible to combine both the
transmitter and the receiver characteristics to a single term S(t).This term is referred to as the
system waveform.Thus, we are able to write our problem in the form (Wang et al. a)

h(t) =
N

∑
i=

( f ⋆ g)(t). ()

where h is the incoming signal recorded by the receiver, f denotes a mapping which specifies
the kernel function or point spread function, and g is the unknown cross-section.The problem
is how to deconvolve the convolution equation () to get the approximation to the actual cross-
section.

. Aerosol Inverse Problems

It is well-known that the characteristics of the aerosol particle size, which can be represented
as a size distribution function in the mathematical formalism, say n(r), plays an important
role in climatemodeling due to its uncertainty (Houghton et al. ). So, the determination of
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particle size distribution function becomes a basic task in aerosol research (see, e.g., Twomey
; Davies ; Bohren and Huffman ; Mccartney ; Bockmann ; Bockmann
and Kirsche ). Since the relationship between the size of atmospheric aerosol particles
and the wavelength dependence of the extinction coefficient was first suggested by Angström
(Angström ), the size distribution began to be retrieved by extinction measurements.

For sun-photometer, the attenuation of the aerosols can be written as the integral equation
of the first kind

τaero(λ) = ∫
∞


πrQext(r, λ, η)n(r)dr + �(λ), ()

where r is the particle radius; n(r) is the columnar aerosol size distribution (i.e., the number
llof particles per unit area per unit radius interval in a vertical column through the atmosphere);
lη is the complex refractive index of the aerosol particles; λ is the wavelength; �(λ) is the
error/noise; and Qext(r, λ, η) is the extinction efficiency factor from Mie theory. Since aerosol
optical thickness (AOT) can be obtained from the measurements of the solar flux density with
sun-photometers, one can retrieve the size distribution by the inversion of AOTmeasurements
through the above equation. This type of method is called extinction spectrometry, which is
not only the earliest method applying remote sensing to determine atmospheric aerosol size
characteristics, but also the most mature method thus far.

A common feature for all particle size distribution measurement systems is that the relation
between noiseless observations and the size distribution function can be expressed as a first kind
Fredholm integral equation, e.g., see Voutilainenand and Kaipio (), Wang et al. (a),
Wang (, ), Nguyen andCox (),Wang andYang (). For the aerosol attenuation
problem (), let us rewrite () in the form of the abstract operator equation

K : X �→ Y ,

(Kn)(λ) + �(λ) = ∫
∞


k(r, λ, η)n(r)dr+ �(λ) = o(λ) + �(λ) = d(λ), ()

where k(r, λ, η) = πrQext(r, λ, η); X denotes the function space of aerosol size distributions;
and Y denotes the observation space. Both X and Y are considered to be the separable Hilbert
space. Note that τaero in Eq.  is the measured term, it inevitably induces noise/errors. Hence,
d(λ) is actually a perturbed right-hand side. Keeping in mind operator symbol, Eq.  can be
written as

Kn + � = o + � = dl. ()

 Regularization

. What Causes Ill-Posedness

From this section till the end of the chapter, unless it is specified, we will denote the operator
equation as

K(x) = y, ()

which is an appropriate expression for an observing system, with K the response function (lin-
ear or nonlinear), x the unknown input and y the observed data. Particularly, if K is a linear
mapping, we will denote the response system as

Kx = y, ()
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which is clearly a special case of (). We will also use K as a operator in infinite
spaces sometimes, and a matrix sometimes. We assume that readers can readily recognize
them.

The problem () is said to be properly posed or well-posed in the sense that it has the
following three properties:

(C) There exists a solution of the problem, i.e., existence;
(C) There is at most one solution of the problem, i.e., uniqueness;
(C) The solution depends continuously on the variations of the right hand side (data), i.e.,

stability.
The condition (C) can be easily fulfilled if we enlarge the solution space of the prob-

lem (). The condition (C) is seldom satisfied for many indirectly measurement problems.
This means more than one solution may be found for the problem () and the informa-
tion about the model is missing. In this case, a priori knowledge about the solution must
be incorporated and built into the model. The requirement of stability is the most important
one. If the problem () lacks the property of stability, then the computed solution has noth-
ing to do with the true solution since the practically computed solution is contaminated by
unavailable errors.Therefore, there is no way to overcome this difficulty unless additional infor-
mation about the solution is available. Again, a priori knowledge about the solution should be
involved.

If problem () is well-posed, then K has a well-defined, continuous inverse operator K−.
In particular, K−(K(x)) = x for any x ∈ X and Range(K) = Y . In this case both the algebraic
nature of the spaces and the topologies of the spaces are ready to be employed.

The particle size distribution model () is a linear model in infinite spaces. The operator
K is compact. The ill-posedness is self-evident because that at least one of the three items for
well-posed problems is violated. Note that () is a linear model in finite spaces, therefore it is
easy to rewrite it into a finite rank operator equation

Kx = y, ()

by setting x = [ fiso, fvol, fgeo]T and y = [y j] with the entries y j = r j(ti , tv , ϕ), where y is the
measurement data. The inverse problem is how to recover the model parameters x given the
limited measurement data y. For Lidar backscatter cross-section inversion, one needs to solve a
deconvolution problem. The ill-posedness is due to the ill-conditioning of the spectrum of the
operator and noisy data.

Numerically, the discrete ill-posedness for the above examples is because that their oper-
ators may be inaccurate (can only be approximately calculated), their models are usually
underdetermined if there are too few observations or poor directional range, or the obser-
vations are highly linearly dependent and noisy. For example, a single angular observa-
tion may lead to a under determined system whose solutions are infinite (the null space
of the kernel contains nonzero vectors) or the system has no solution (the rank of the
coefficient matrix is not equal to the augmented matrix). In practice, random uncertainty
in the reflectances sampled translates into uncertainty in the BRDF and albedo. We note
that noise inflation depends on the sampling geometry alone. For example, for MODIS
and MISR sampling, they vary with latitude and time of year; but for kernel-based mod-
els, they do not depend on wavelength or the type of BRDF viewed. Therefore, the ran-
dom noise in the observation (BRDF) and the small singular values of K control the error
propagation.
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. Imposing a Priori Constraints on the Solution

For effective inversion of the ill-posed kernel driven model, we have to impose an a priori
constraint to the interested parameters.This leads to solving a constrained LSE problem

min J(x), s.t. Kx = y, Δ ≤ c(x) ≤ Δ, ()

where J(x) denotes an object functional, which is a function of x, c(x) is the constraint to
the solution x, Δ and Δ are two constants which specify the bounds of c(x). Usually, J(x) is
chosen as the norm of x with different scale. If the parameter x comes from a smooth function,
then J(x) can be chosen as a smooth function, otherwise, J(x) can be nonsmooth.

The constraint c(x) can be smooth (e.g., Sobolev stabilizer) or nonsmooth (e.g., total vari-
ation or lq norm (q ≠ ) based stabilizer). A generically used constraint is the smoothness. It
assumes that physical properties in a neighborhood of space or in an interval of time present
some coherence and generally do not change abruptly. Practically, we can always find regular-
ities of a physical phenomenon with respect to certain properties over a short period of time
(Wang et al. a, ). The smoothness a prior has been one of the most popular a prior
assumptions in applications. The general framework is the so-called regularization which will
be explained in the next subsection.

. Tikhonov/Phillips–Twomey’s Regularization

Most of inverse problems in real environment are generally ill-posed. Regularization methods
are widely-used to solve such ill-posed problems. The complete theory for regularization was
developed byTikhonov and his colleagues (Tikhonov andArsenin ). For the discretemodel
(), we suppose y is the true right-hand side, and denote yn the measurements with noise
which represents the bidirectional reflectance. The Tikhonov regularization method is to solve
a regularized minimization problem

Jα(x) := ∥Kx − yn∥ + α∥D/x∥ �→ min ()

instead of solving
J(x) = ∥Kx − yn∥


 �→ min . ()

In (), α is the regularization parameter and D is a positively (semi-)definite operator. By a
variational process, the minimizer of () satisfies

KTKx + αDx = KTyn. ()

The operator D is a scale matrix which imposes smoothness constraint to the solution x. The
scale operator D and the regularization parameter α can be considered as some kind of a priori
information, which will be discussed next.

Phillips–Twomey’s regularization is based on solving the problem (Phillips ; Twomey
)

min
x

Q(x), s.t. ∥Kx − yn∥ = Δ, ()

whereQ(x) = (Dx, x), whereD is a preassigned scale matrix and Δ > . It is clear that Phillips–
Twomey’s regularization shares similarity with Tikhonov’s regularization and can be written in
consistent form.
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.. Choices of the Scale Operator D

To regularize the ill-posed problem discussed in > Sect. ., the choice of the scale operator
D has great impact to the performance to the regularization. Note that the matrix D plays the
role in imposing a smoothness constraint to the parameters and in improving the condition of
the spectrum of the adjoint operator KTK . Therefore, it should be positively definite or at least
positively semi-definite. One may readily see that the identity may be a choice. However this
choice does not fully employ the assumption about the continuity of the parameters.

In Wang et al. (a), we assume that the operator equation () is the discretized version
of a continuous physical model

K(x(τ)) = y(τ) ()

with K the linear/nonlinear operator, x(τ) the complete parameters describing the land sur-
faces and y the observation. Most of the kernel model methods reported in literature may have
the above formulation. Hence instead of establishing regularization for the operator equation
() in the Euclidean space, it is more convenient to perform the regularization to the operator
equation () on an abstract space. So from a priori considerations we suppose that the param-
eters x is a smooth function, in the sense that x is continuous on [a, b], is differentiable almost
everywhere and its derivative is square-integrable on [a, b]. By Sobolev’s imbedding theorem
(see, e.g., Tikhonov and Arsenin ; Xiao et al. ), the continuous differentiable function
x in W , space imbeds into integrable continuous function space L automatically. The inner
product of two functions x(τ) and y(τ) in W , space is defined by

(x(τ), y(τ))W , := ∫
Ω

(x(τ)y(τ) +
n

∑
i=

∂x
∂τi

∂y
∂τ j

)dτdτ . . . dτn , ()

where Ω is the assigned interval of the definition.
Now we construct a regularizing algorithm that an approximate solution xα ∈ W ,[a, b]

which converges, as error level approaching zero, to the actual parameters in the norm of space
W ,[a, b], precisely we construct the functional

Jα(x) = ρF[Kx, y] + αL(x), ()

where ρF[Kx, y] = 
∥Kx − y∥L

, L(x) = 
 ∥x∥W , .

Assume that the variation of x(τ) is flat and smooth near the boundary of the integral
interval [a, b]. In this case, the derivatives of x are zeros at the boundary of [a, b]. Let hr be the
step size of the grids in [a, b], which could be equidistant or adaptive.Then after discretization
of L(x), D is a tridiagonal matrix in the form

D := D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 + 
h
r

− 
h
r

 ⋯ 
− 

h
r

 + 
h
r

− 
h
r

⋯ 
⋮ ⋱ ⋱ ⋱ ⋮

 ⋯ − 
h
r

 + 
h
r

− 
h
r

 ⋯  − 
h
r

 + 
h
r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For the linear model (), after the kernel normalization, we may consider [a, b] = [−, ].Thus,
D is in the above form with hr = /(N − ).

There are many kinds of techniques for choosing the scale matrix D appropriately. In
Phillips–Twomey’s formulation of regularization (see, e.g., Wang et al. ), the matrix D is
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created by the norm of the second differences, ∑
N−
i= (xi− − xi + xi+), which leads to the

following form of matrix D

D := D =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

 −     ⋯    
−  −    ⋯    
 −  −   ⋯    
  −  −  ⋯    
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮

   ⋯   −  −  
   ⋯    −  − 
   ⋯     −  −
   ⋯      − 

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

However, the matrix D is badly conditioned and thus the solution to minimize the functional
Jα[x]with D as the smooth constraint is observed to have some oscillations (Wang et al. ).
Another option is the negative Laplacian (see, e.g., Wang and Yuan ; Wang ): Lx := −

∑
n
i=

∂x
∂τi

, for which the scale matrix D for the discrete form of the negative Laplacian Lx is

D := D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 −  ⋯  
−  − ⋯  
⋮ ⋮ ⋮ ⋯ ⋮ ⋮

   −  −
   ⋯ − 

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Where we assume that the discretization step length as . The scale matrix D is positive semi-
definite but not positive definite and hence the minimization problem may not work efficiently
for severely ill-posed inverse problems. Another option of the scale matrix D is the identity, i.e.,
D := D = diag(e), where e is the components of all ones, however this scale matrix is too
conservative and may lead to over regularization.

.. Regularization Parameter Selection Methods

As noted above, the choice of the regularization parameter α is important to tackle the ill-
posedness. A priori choice of the parameter α allows  < α < . However the a priori choice of
the parameter does not reflect the degree of approximation thatmay lead to either over estimate
or under estimate of the regularizer.

We will use the widely-used discrepancy principle (see, e.g., Tikhonov and Arsenin ;
Tikhonov et al. ; Xiao et al. ) to find an optimal regularization parameter. In fact, the
optimal parameter α∗ is a root of the nonlinear function

Ψ(α) = ∥Kxα − yn∥ − δ, ()

where δ is the error level to specify the approximate degree of the observation to the true noise-
less data, xα denotes the solution of the problem in Eq. () corresponding to the value α of
the related parameter. Noting Ψ(α) is differentiable, fast algorithms for solving the optimal
parameter α∗ can be implemented. In this chapter we will use the cubic convergent algorithm
developed in (Wang and Xiao ):

αk+ = αk −
Ψ(αk)

Ψ′(αk) + (Ψ′(αk) − Ψ(αk)Ψ′′(αk))



. ()
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In the above cubic convergent algorithm, the function Ψ′(α) and Ψ′′(α) have the following
explicit expression:

Ψ′(α) = −αβ′(α), Ψ′′(α) = −β′(α) − α [∥
dxα
dα

∥


+ (xα ,
dxα
dα )] ,

where β(α) = ∥xα∥, β′(α) =  ( dxα
dα , xα), and xα , dxα/dα and dxα/dα can be obtained by

solving the following equations:

(KTK + αD)xα = KTyn, ()

(KTK + αD)
dxα
dα

= −Dxα , ()

(KTK + αD)
dxα
dα = −D

dxα
dα

. ()

To solve the linear matrix-vector equations (–), we use the Cholesky (square root)
decomposition method. A remarkable characteristic of the solution of (–) is that the
Cholesky decomposition of the coefficient matrix KTK + αD needs only once, then the three
vectors xα , dxα/dα, dxα/dα can be obtained cheaply.

In the case of perturbation of operators, the above method can be applied similarly. Note
that in such case, the discrepancy equation becomes

Ψ̃(α) = ∥K̃xα − yn∥ − (δ + δ̃) − (μκη(yn, K̃))


= , ()

where δ̃ is the error level of K̃ approximating the true operator, η = (δ, δ̃) and μη(yn, K̃) is the
incompatibility measure of the equation Kx = y and κ > . Equation  is called a generalized
discrepancy equation and is an one-dimensional nonlinear equation which can be solved by
Newton’s or cubic convergent method. For more information about generalized discrepancy,
we refer to Wang (), Tikhonov et al. () for details.

. Direct Regularization

Instead of Tikhonov regularization, our goal in this section is to solve an equality constrained
l problem

∥x∥ �→ min, s.t. K̃x + n = yn, ()

where K̃ ∈ ℝ
M×N is a perturbation of K (i.e., if we regard K as an accurate operator, then K̃ is

an approximation to K which may contain error or noise), x ∈ ℝ
N , n, yn ∈ ℝ

M .
As is mentioned already, the ill-posedness is largely due to the small singular values of the

linear operator. Let us denote the singular value decomposition of K̃ as K̃ = UM×NΣN×NVT
N×N =

∑
N
i= σiuivTi , where both U = [ui] and V = [vi] are orthonormal matrices, i.e., the products of

U with its transpose and V with its transpose are both identity matrices; Σ is a diagonal matrix
whose nonzero entries consist of the singular values of K̃. The traditional LSE solution xlse of
the constrained optimization system () can be expressed by the singular values and singular
vectors in the form

xlse =
N

∑
i=


σi

(uT
i yn) vi . ()

If the rank of K̃ is p ≤ min{M,N}, then the above solution form inevitably encounters numer-
ical difficulties, since the denominator contains numerically infinitesimal values. Therefore,



  Quantitative Remote Sensing Inversion in Earth Science: Theory and Numerical Treatment

to solve the problem by the SVD, we must impose a priori information. As we have noted,
Tikhonov regularization solves a variation problem by incorporating a priori information into
the solution. In this section, we consider another way of incorporating a priori information to
the solution. The idea is quite simple: instead of filtering the small singular values by replacing
the small singular values with small positive numbers, we just make a truncation of the sum-
mation, i.e., the terms containing small singular values are replaced by zeroes. In this way, we
obtain a regularized solution of the least squares problem () of minimal norm

xtrunclse =
p

∑
i=


σi

(uT
i yn) vi ()

and minx ∥K̃x − yn∥ = ∑i=p+,⋯ ∣uT
i yn∣

. We wish to examine the truncated singular value
decomposition more. Note that in practice, K̃ may not be exactly rank deficient, but instead be
numerically rank deficient, i.e., it has one or more small but nonzero singular values such that
pδ < rank(K̃). Here, pδ refers to the numerical δ-rank of a matrix, see, e.g.,Wang et al. (b)
for details. It is clear from Eq.  that the small singular values inevitably give rise to difficulties.
The regularization technique for SVD means some of the small singular values are truncated
when in computation, and is hence is called the NTSVD. Now assume that K is corrupted by
the error matrix Bδ . Then, we replace K by a matrix Kp̃ that is close to K and mathematically
rank deficient. Our choice of Kp̃ is obtained by replacing the small nonzero singular values
σp̃+, σp̃+, . . . with exact zeros, i.e.,

Kp̃ =
p̃

∑
i=

σiuivTi ()

where p̃ is usually chosen as pδ . We call () the NTSVD of K . Now, we use () as the linear
kernel to compute the least squares solutions. Actually, we solve the problemminx ∥Kp̃x−yn∥,
and obtain the approximate solution xapprlse of the minimal-norm

xapprlse = K†p̃ yn =
p̃

∑
i=


σi

(uT
i yn) vi , ()

where K†p̃ denotes the Moore–Penrose generalized inverse.
Let us explain in more details the NTSVD for the underdetermined linear system. In

this case, the number of independent variables is more than the number of observations, i.e.,
M < N . Assume that the δ-rank of K̃ is p̃ ≤ min{M,N}. It is easy to augment K̃ to be an
N × N square matrix K̃aug by padding zeros underneath its M nonzero rows. Similarly, we
can augment the right-hand side vector yn with zeros. The singular decomposition of K̃ can
be rewritten as K̃aug = UΣVT, where U = [u u . . . uN]N×N , V = [v v . . . , vN]N×N and
Σ = diag(σ, σ, . . . , σp̃, , . . . , ). From this decomposition, we find that there are N − p̃ the-
oretical zero singular values of the diagonal matrix Σ. These N − p̃ zero singular values will
inevitably induce high numerical instability.

. Statistical Regularization

Bayesian statistics provides a conceptually simple process for updating uncertainty in the light
of evidence. Initial beliefs about some unknownquantity are represented by a prior distribution.
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Information in the data is expressed by the likelihood function L(x∣y). The a prior distribution
p(x) and the likelihood function are then combined to obtain the posterior distribution for the
quantity of interest.The a posterior distribution expresses our revised uncertainty in light of the
data, in other words, an organized appraisal in the consideration of previous experience.

The role of Bayesian statistics is very similar to the role of regularization. Now, we establish
the relationship between the Bayesian estimation and the regularization. A continuous random
vector x is said to have a Gaussian distribution if its joint probability distribution function has
the form

px(x; μ,C) =


√
(π)Ndet(C)

exp(−



(x − μ)TC−(x − μ)) , ()

where x, μ ∈ ℝ
N , C is an n-by-n symmetric positive definite matrix, and det(⋅) denotes the

matrix determinant.The mean is given by E(x) = μ and the covariance matrix is cov(x) = C.
Suppose y = Kx + n is a Gaussian distribution with mean Kx and covariance Cn, where Cn

is the noise covariance of the observation noise and model inaccuracy. Then by () we obtain

p(y∣x) =


√
(π)Mdet(Cn)

exp(−



(y − Kx)TC−n (y − Kx)) . ()

From (), the prior probability distribution is given by p(x) =
exp(− 

 x
TC−x x)

√

(π)Ndet(Cx)
. By Bayesian

statistical inference and the above two equations, we obtain an a posteriori log likelihood
function

L(x∣y) = log p(x∣y) = −



(y − Kx)TC−n (y − Kx) −


xTC−x x + ζ , ()

where ζ is constant with respect to x. The maximum a posteriori estimation is obtained by
maximizing () with respect to x,

x = (KTC−n K + C−x )
−
KTC−n y. ()

The easiest way of choosing Cn and Cx is by letting Cn = σ 
n IM , Cx = σ 

x IN , and then ()
becomes

x = (KTK + ξIM)
−
KTy, ()

where ξ = σ 
n/σ 

x , which is the noise-to-signal ratio. It is clear that the solution obtained
by maximum a posteriori estimation has the same form as the solution of the Tikhonov
regularization.

 Optimization

. Sparse/Nonsmooth Inversion in l Space

It deserves attention that the ill-posedness is the intrinsic feature of the inverse problems. Unless
some additional information/knowledge such as monotonicity, smoothness, boundedness or
the error bound of the raw data are imposed, the difficulty is hardly to be solved. Gener-
ally speaking, the kernel-driven BRDF model is semiempirical, the retrieved parameters x are
mostly considered as a kind of weight function though it is a function of leaf area index (LAI),
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Lambertian reflectance, sunlit crown reflectance, and viewing and solar angles. Therefore, x is
not necessarily positive. However, since it is a weight function, an appropriate arrangement of
the components of x can yield the same results.That is to say, x can be “made” to be nonnegative.
The problem remaining is to develop some propermethods to solve the “artificial” problem.Our
new meaning to the solution x∗ is related to the l norm problem

min
x

∥x∥, s.t. Kx = y, x ≥ , ()

which automatically imposes a priori information by considering the solution in l space.
Because of the limitations of the observation system, onemay readily see that the recovered land
surface parameters are discrete and sparse. Therefore, if an inversion algorithm is not robust,
the outliers far from the true solutionmay occur. In this situation, the priori constrained l min-
imizationmaywork better than the conventional regularization techniques.Themodel () can
be reduced to a linear programming problem (see Yuan ; Ye ; Wang et al. ), hence
linear programming methods can be used for solving the inverse problem.

The l norm solution method is seeking for a feasible solution within the feasible set
S = {x : Kx = y, x ≥ }. So it is actually searching for an interior point within the feasible
set S, hence is called the interior point method.The dual standard form of () is in the form

max yTg, s.t. s = e − KTg ≥ , ()

where e is a vector with all components equaling to . Therefore, the optimality conditions for
(x, g, s) to be a primal-dual solution triplet are that

Kx = y, KTg + s = e, S̃ F̃e = , x ≥ , s ≥ , ()

where S̃ = diag(s, s,⋯, sN), F̃ = diag(x, x, . . . , xN) and si , xi are components of vectors
s and x, respectively. The notation diag(⋅) denotes the diagonal matrix whose only nonzero
components are the main diagonal line.

The interior point method generates iterates {xk , gk , sk} such that xk >  and sk > . As the
iteration index k approaches infinity, the equality-constraint violations ∥y − Kx∥ and ∥KTgk +

sk − e∥ and the duality gap xTk sk are driven to zero, yielding a limiting point that solves the
primal and dual linear problems. For the implementationprocedures and examples about using
the algorithm, please refer to Wang et al. (b, d) for details.

A more general regularization model is recently proposed inWang et al. (b), where the
authors considered a regularization model in general form

min J[f] :=



∥Kf − hn∥
p
lp

+
ν


∥L(f − f)∥
q
lq
, ()

where p, q >  which are specified by users, ν >  is the regularization parameter, L is the
scale operator, and f is an a priori solution of the original model. This formulation includes
most of the developed methods. Particularly, for p =  and q =  or q = , the model repre-
sents nonsmooth and sparse regularization, which represents a quite important and hot topic in
present, compressive sensing for decoding in signal processing.A regularizing active setmethod
was proposed both for quadratic programming and non-convex problems, we referWang et al.
(b) for details.
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. OptimizationMethods for l MinimizationModel

.. Newton-TypeMethods

Theconventional Tikhonov regularizationmethod is equivalent to constrained l minimization
problem

min
x

∥x∥, s.t. Kx = y. ()

This reduces to solve an unconstrained optimization problem

x = argminx J
α
(x), Jα(x) =




∥Kx − y∥

 +

α


∥x∥

. ()

The gradient and Hessian of Jα(x) are given by gradx[Jα(x)] = (KTK + αI)−x − KTy and
Hessx[Jα(x)] = KTK+αI, respectively.Hence at the k-th iterative step, the gradient andHessian
of Jα(xk) can be expressed as gradk[Jα] and Hessk[Jα], which are evaluated by gradxk [Jα(xk)]

and Hessxk [Jα(xk)] respectively.
Newton-type methods are based on Gauss–Newton method and its various variations. We

only supply the algorithm for Gauss–Newton method in this subsection. The Gauss–Newton
method is an extension of Newton method in one-dimensional space to higher dimensional
space. The iteration formula reads as

xk+ = xk − τk(Hessk[Jα])−gradk[Jα], ()

where τk , a damping parameter, that can be solved by line search technique, is used to control
the direction (Hessk[Jα])−gradk[Jα]. One may also apply a more popular technique, called
the trust region technique, to control the direction (Hessk[Jα])−gradk[Jα] within a reliable
generalized ball in every iteration (see Wang and Yuan ; Wang ). We recall that the
inverse of Hessk[Jα] should be avoided for saving the amount of computation. Instead, linear
algebraic decomposition methods can be applied to solve (Hessk[Jα])−gradk[Jα].

There are different variations of the Gauss–Newtonmethod,which are based on the approx-
imation of the explicit Hessian matrix Hessx[Jα], e.g., DFP, BFGS, L-BFGS, and trust region
methods. For these extensions to well-posed and ill-posed problems, please refer to Kelley
(), Yuan (), Nocedal (), Dennis and Schnable (), Wang and Yuan (), Yuan
(), andWang () for details. Wemention briefly a global convergence method, the trust
region method. The method solves an unconstrained non-quadratic minimization problem
minx∈ℝn Γ(x). For the problem (), the trust region method requires solving a trust region
subproblem

min
s

Υ(s) := (gradx[Jα], s) +



(Hessx[Jα]s, s), s.t. ∥s∥ ≤ Δ, ()

where Δ >  is the trust region radius. In each step, a trial step s is computed and decided
whether it is acceptable or not. The decision rule is based on the ratio ρ between the actual
reduction in the objective functional and the predicted reduction in the approximate model.
And the trust region iterative step remains unchanged if ρ ≤ , where ρ = Ared(x)

Pred(x) , and Ared(x)

andPred(x) are defined by Jα(x)−Jα(x+s) and Υ()−Υ(s), respectively. For themodel in (),
since it is in a quadratic form, the ratio ρ is always equal to .Thismeans the trial step s, nomatter
it is good or not, will be always accepted.We note that the approximate accuracy is characterized
by the discrepancy between the observation and the true data; therefore variations of the norm
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of the discrepancy may reflect the degree of approximation. Based on these considerations, we
propose to accept or reject the trial step sk at the kth step by the ratio

ρk =
Jα(xk+)
Jα(xk)

=
Jα(xk + sk)

Jα(xk)
,

where Jα(xk+) and Jα(xk) are the reductions in norm of the discrepancy at (k+ )-th and k-th
steps, respectively. For the convergence and regularizing properties, we refer to Wang ()
and Wang and Ma () for details.

.. Gradient-TypeMethods

The gradient method does not need the Hessian information. For the linear operator equa-
tion Kx = y, where K , x and y are with the same meaning as before, we first recall the
well-known fixed point iteration method in standard mathematical textbook: the fixed point
iteration formula for solving the above linear operator equation is as

xk+ = xk + τ(y − Kxk), ()

where τ ∈ (, /∥K∥) and K is linear, bounded and nonnegative. One may readily see that
this method is very similar to the method of successive-approximations, where a very simple
way to introduce the method is the following. Consider the operator T(x) = x + τ(y − Kx),
where τ is the so-called relaxation parameter. Any solution of the linear operator equation is
equivalent to finding a fixed point of the operator T , i.e., solve for x from x = T(x). Assuming
that T is a contraction mapping, then by the method of successive approximations, we obtain
the following iterative scheme xk+ = T(xk), i.e., iterative formula (). The method converges
if and only if Kx = y has a solution.

Nowwe introduce a very simple gradientmethod, the steepest descentmethod, the iteration
formula reads as

xk+ = xk + τk ⋅ KT
(y − Kxk), ()

where τk is obtained by line search, i.e., τk = argminτ> J(xk − τgradk[J]). If we restrict
stepsize τk to be fixed in (, /∥KTK∥), then the steepest descent method reduces to the
famous Landweber–Fridman iteration method. More extensions include nonmonotone gradi-
ent method, truncated conjugate gradient method with trust region techniques and different
applications in applied science and can be found in, e.g., Brakhage (), Wang and Yuan
(), Wang (), Fletcher et al. (), Barzilai and Borwein (), and Wang and Ma
().

Finally we want to mention that for underdetermined ill-posed problems, regularization
constraints or a priori constraints should be incorporated into the minimization model then
we may apply the aforementioned gradient methods. Application examples on aerosol particle
size distribution function retrieval problems and nonmonotone gradientmethod are include in
Wang ().
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 Practical Applications

. Kernel-Based BRDFModel Inversion

.. Inversion by NTSVD

Consider the linear combination of three kernels kgeo, kvol and the isotropic kernel

f̂iso + f̂geokgeo(ti , tv , ϕ) + f̂volkvol(ti , tv , ϕ) = r̂

for each observation. Considering the smoothing technique in l space, we solve the following
constrained optimization problem

min ∥[ f̂iso, f̂geo, f̂vol]
T∥, s.t. f̂iso + f̂geokgeo + f̂volkvol = r̂. ()

Let us just consider an extreme example for kernel-based BRDF model: i.e., if only a single
observation is available at one time, then it is clear that the above equation has infinitely many
solutions. If we denote K = [ kgeo(ti , tv , ϕ) kvol(ti , tv , ϕ)]×, then the singular decompo-
sition of the zero augmented matrix Kaug leads to Kaug = U×Σ×VT

× with U = [u u u],
Σ = diag(σ, σ, σ), V = [v v v], where each ui , vi , i = , , , are the -by- columns.
Our a priori information is based on searching for a minimal norm solution within the infi-
nite set of solutions, i.e., the solution f ∗ = [ f̂ ∗iso, f̂

∗

geo, f̂ ∗vol]
T
satisfies f̂ ∗iso + f̂ ∗geokgeo(ti , tv , ϕ) +

f̂ ∗volkvol(ti , tv , ϕ) = r̂ and at the same time ∥ f ∗∥ �→ minimum.

.. Tikhonov Regularized Solution

Denote by M the number of measurements in the kernel-based models. Then the operator
equation () can be rewritten in the following matrix-vector form

Kx = y, ()

where K =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 kgeo() kvol()
 kgeo() kvol()

⋮ ⋮ ⋮

 kgeo(M) kvol(M)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, x =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

fiso
fgeo
fvol

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r
r
⋮

rM

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

In which, kgeo(k) and kvol(k) represent the values of kernel functions kgeo(ti , tv , ϕ) and
kvol(ti , tv , ϕ) corresponding to the k-th measurement for k = , , . . .; rk represents the k-th
observation for k = , , . . ..

By Tikhonov Regularization, we solve for a regularized solution xα from minimizing the
functional

J(x, α) =



∥Kx − y∥


+


α∥Dx∥

. ()

Choices of the parameter α and the scale operator D are discussed in > Sect. ..

.. Land Surface Parameter Retrieval Results

We use the combination of RossThick kernel and LiTransit kernel in the numerical tests. In
practice, the coefficientmatrix K cannot be determined accurately, and a perturbed version K̃ is
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obtained instead. Also instead of the truemeasurement y, the observedmeasurement yn = y+n
is the addition of the true measurement y and the noise n, which for simplicity is assumed to be
additive Gaussian random noise. Therefore it suffices to solve the following operator equation
with perturbation

K̃x = yn,

where K̃ := K+δB for some perturbation matrix B and δ denotes the noise level (upper bound)
of n in (,). In our numerical simulation, we assume that B is a Gaussian randommatrix, and
also that ∥yn − y∥ ≤ δ < ∥yn∥. The above assumption about the noise can be interpreted as
that the signal-to-noise ratio (SNR) should be greater than . We make such an assumption
as we believe that observations (BRDF) are not trustable otherwise. It is clear that () is an
underdetermined system if M ≤  and an overdetermined system if M > . Note that for
satellite remote sensing, because of the restrictions in view and illumination geometries, K̃TK̃
needs not have bounded inverse (see Wang et al. a; Wang et al. ; Verstraete et al. ;
Li et al. ). We believe that the proposed regularization method can be employed to find an
approximate solution x†α satisfies ∥K̃x†α − yn∥ �→ min.

We use atmospherically corrected moderate resolution imaging spectroradiometer
(MODIS) B product acquired on a single day as an example of single observation BRDF at
certain viewing direction. Each pixel has different view zenith angle and relative azimuth angle.
The data MODKM.A- with horizontal tile number () and vertical tile number
() were measured covers Shunyi county of Beijing, China. The three parameters are retrieved
by using this B product. > Figure a plots the reflectance for band  of a certain day DOY=.
InMODIS AMBRALS algorithm, when insufficient reflectances or a poorly representative sam-
pling of high quality reflectances are available for a full inversion, a database of archetypal
BRDF parameters is used to supplement the data and a magnitude inversion is performed (see
Verstraete et al. ; Strahler et al. ). We note that the standard MODIS AMBRALS algo-
rithm cannot work for such an extreme case, even for MODIS magnitude inversion since it is
hard to obtain seasonal data associated with a dynamic land cover in a particular site. But our
method still works for such an extreme case because that smoothness constraint is implanted
into the model already. We plot the white-sky albedos (WSAs) retrieved by NTSVD, Tikhonov
regularization and sparse inversion for band  of one observation (DOY=) in > Fig. b–d,
respectively. From > Fig. b–d, we see that the albedo retrieved from insufficient observations
can generate the general profile. We observe that most of the details are preserved though the
results are not perfect. The results are similar to the one from NTSVD method developed in
Wang et al. (a). Hence, we conclude that these developed methods can be considered use-
ful methods for retrieval of land surface parameters and for computing land surface albedos.
Thus these developed algorithms can be considered as supplement algorithms for the robust
estimation of the land surface BRDF/albedos.

We want to emphasize that ourmethod can generate smoothing data for helping retrieval of
parameters once sufficient observations are unavailable. As we have pointed out in Wang et al.
(a, ), we do not suggest discarding the useful history information (e.g., data that is
not too old) and the multiangular data. Instead, we should fully employ such information if it
is available.The key to why our algorithm outperforms previous algorithms is because that our
algorithm is adaptive, accurate and very stable, which solves kernel-based BRDF model of any
order, which may be a supplement for BRDF/albedo retrieval product.
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⊡ Fig. 
(a) Reflectance for band  of MODKM.A; (b) white-sky albedo retrieved by Tikhonov reg-
ularization method; (c) white-sky albedo retrieved by NTSVD method; and (d) WSA retrieved by
l sparse regularization method

For the remote sensor MODIS, which can generate a product by using  days different
observations data, this is not a strict restriction for MODIS, since it aims at global exploration.
For other sensors, the period for their detection of the same area will be longer than  days or
more. Therefore, for vegetation in the growing season, the reflectance and albedos will change
significantly. Hence robust algorithms to estimate BRDF and albedos in such cases are highly
desired. Our algorithm is a proper choice, since it can generate retrieval results which quite
approximate the true values of different vegetation type of land surfaces by capturing just one
time of observation.

Moreover, for some sensors with high spatial resolution, the quasi multiangular data are
impossible to obtain. This is why there are not high resolution albedo products. But with our
algorithm, we can achieve the results. This is urgently needed in real applications.

. Inversion of Airborne Lidar Remote Sensing

The analytical representation of the transmitted laser pulse and the true cross-sections given by
third-order spline functions. For example, we generate the synthetic laser pulse function flp(x)

within the interval [, ] by the formula flp(x) = −.x + .x − .x + .. The
analytical representation of the cross-section function gcs(x) within the interval [/, /] is
by the formula gcs(x) = x − x + x + 

 .
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The recorded waveform function hwf (x) (i.e., data) is calculated by a convolution of the
splines representing the transmitted laser pulse ( flp(x)) and the cross-section (gcs(x)) so that

hwf(x) = flp(x) ⋆ gcs(x).

Note that hwf represents the observation that means different kinds of noise may be also
recorded besides the true signal. Here we only consider a simple case, i.e., we assume that the
noise is mainly additive Gaussian noise in [, ], i.e., hwf = htruewf + δ ⋅ rand (size (htruewf )), where
δ >  is the noise level, rand (size (htruewf )) is the Gaussian random noise with the same size
as htruewf . In our simulation, the Gaussian random noise is generated with mean equaling  and
standard deviation equaling .

We apply Tikhonov regularization algorithm (see > Sect. .) to recover the cross-
section and make a comparison. The synthetic laser pulse sampled with ns resolution is
shown in > Fig. a. Comparisons of the undistorted cross-sections with the recovered
cross-sections are illustrated in > Fig. b. It is apparent that our algorithm can find stable
recoveries to the simulated synthetic cross-sections. We do not list the plot of the com-
parison results for small noise levels since the algorithm yields perfect reconstructions. We
also tested the applicability of the regularization method to LMS-Q data (RIEGL LMS-
Q (www.riegl.co.at)). The emitted laser scanner sensor pulse is shown in > Fig. c. The
recorded waveform of the first echo of this pulse is shown in > Fig. d (dotted line). The
retrieved backscatter cross-section using regularization method is shown in > Fig. a. The
solid line in > Fig. d shows the reconstructed signal derived by the convolution of the
emitted laser pulse and this cross-section. One may see from > Fig. a that there are sev-
eral small oscillations in the region [, ] ns. But note that the amplitude of these
oscillations are typically small, we consider they are noise or computational errors induced
by noise when performing numerical inversion. To show the necessity of regularization,
we plot the result of least squares fitting without regularization in > Fig. b. The com-
parison results immediately reveal the importance of acceptance of regularization. More
extension about numerical performances and comparisons can be found in Wang et al.
(a).

. Particle Size Distribution Function Retrieval

We consider retrieving aerosol particle size distribution function n(r) from the attenuation
equation (). But it is an infinite dimensional problem with only a finite set of observations,
so it is improbable to implement such a system by computer to get a continuous expression of
the size distribution n(r). Numerically, we solve the discrete problem of operator equation ().
Using collocation (Wang et al. ), the infinite problem canbewritten in anfinite dimensional
form by sampling some grids {r j}N

j= in the interval of interests [a, b].
Denoting by K = (Kij)N×N , n, � and d the corresponding vectors, we have

Kn+ � = d. ()

This discrete form can be used for computer simulations.
Phillips–Twomey’s regularization is based on solving the problem

min
n

Q(n), s.t. ∥Kn − d∥ = Δ, ()

www.riegl.co.at
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(a) Synthetic emitted laser pulse; (b) comparison of the true and recovered cross sections in the
case of noise of level ; (c) second emitted laser pulse; and (d) recorded echo waveform of the
laser pulse shown in (c) (dotted curve) and its reconstruction using the cross section shown in
> Fig.  (a) (solid curve)
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(a) The retrieved backscatter cross-section using regularization; (b) the retrieved backscatter cross-
section using least squares fitting without regularization
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where Q(n) = (Dn,n), where D is a preassigned scale matrix.
In Phillips–Twomey’s formulation of regularization, the choice of the scale matrix is vital.

They chose the form of the matrix D by the norm of the second differences, ∑
N−
i= (ni− − ni +

ni+)
, which corresponds to the form ofmatrix D = D. However, thematrixD is badly condi-

tioned. For example, with N = , the largest singular value is ..The smallest singular
value is . × −. This indicates that the condition number of the matrix D defined by
the ratio of the largest singular value to the smallest singular value equals .× , which
is worse. Hence, for small singular values of the discrete kernel matrix K , the scale matrix D
cannot have them filtered even with large Lagrangian multiplier μ. This numerical difficulty
encourages us to study a more robust scale matrix D, which is formulated as follows.

We consider the Tikhonov regularization in Sobolev W , space as is mentioned in
> Sect. ... By variational process, we solve a regularized linear system of equations

KTKn + αHn− KTd = , ()

whereH is a triangular matrix in the form of D. For choice of the regularization parameter,We
consider the a posteriori approach mentioned in > ... Suppose we are interested in the par-
ticle size in the interval [.,] μm, the step size is hr = .

N− . Now choosing the discrete nodes
N = , the largest singular value of H is . ×  by double machine preci-
sion, and the smallest singular value of H is . by double machine precision.
Compared to the scale matrix D of Phillips–Twomey’s regularization, the condition number of
H is . × , which is better than D in filtering small singular values of the
discrete kernel K .

To perform the numerical computations, we apply the technique developed in King et al.
(), i.e., we assume that the actual aerosol particle size distribution function consists of
the multiplication of two functions h(r) and f (r): n(r) = h(r) f (r), where h(r) is a rapidly
varying function of r, while f (r) is more slowly varying. In this way we have

τaero(λ) = ∫
b

a
[k(r, λ, η)h(r)] f (r)dr, ()

where k(r, λ, η) = πrQext(r, λ, η) and we denote k(r, λ, η)h(r) as the new kernel function
which corresponding to a new operator Ξ:

(Ξ f )(r) = τaero(λ). ()

After obtaining the function f (r), the size distribution function n(r) can be obtained by
multiplying f (r) by h(r).

The extinction efficiency factor (kernel function) Qext(r, λ, η) is calculated from Mie the-
ory: by Maxwell’s electromagnetic (E,H) theory, the spherical particle size scattering satisfies

curlH = iκηE, curlE = −iκH, ()

where κ = π/λ. The Mie solution process is one of finding a set of complex numbers an and
bn which give vectors E and H that satisfy the boundary conditions at the surface of the sphere
(Bohren and Huffman ). Suppose the boundary conditions of the sphere is homogenous,
the expressions for Mie scattering coefficients an and bn are related by

an(z, η) =
ηψn(ηz)ψ

′

n(z) − ψn(z)ψ
′

n(ηz)

ηψn(ηz)ξ′n(z) − ψ′n(ηz)ξn(z)
, ()

bn(z, η) =
ψn(ηz)ψ

′

n(z) − ηψn(z)ψ
′

n(ηz)

ψn(ηz)ξ′n(z) − ηψ′n(ηz)ξn(z)
, ()
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where ψn(z) =
√ πz

 Jn+ 

(z), ξn(z) =

√ πz
 Jn+ 


(z) − i

√ πz
 Nn+ 


(z); Jn+ 


(z) and Nn+ 


(z)

are the (n + 
 )-th order first kind Bessel function and second kind Bessel function (Neumann

function), respectively. These complex-valued coefficients, functions of the refractive index η,
z = πr

λ and ηz provide the full solution to the scattering problem.Thus the extinction efficiency
factor (kernel function) can be written as

Qext(r, λ, η) =

z
∞

∑
n=

(n + )Real(an + bn). ()

The size distribution function ntrue(r) = .r−. exp(−−r−) is used to generate syn-
thetic data. The particle size radius interval of interest is [., ] μm. This aerosol particle size
distribution function can be written as ntrue(r) = h(r) f (r), where h(r) is a rapidly varying
function of r, while f (r) is more slowly varying. Since most measurements of the continen-
tal aerosol particle size distribution reveal that these functions follow a Junge distribution
(Junge ), h(r) = r−(ν

∗

+), where ν∗ is a shaping constant with typical values in the range
.–., therefore it is reasonable to use h(r) of Junge type as the weighting factor to f (r). In
this work, we choose ν∗ =  and f (r) = .r/ exp(−−r−). The form of this size distribu-
tion function is similar to the one given by Twomey (), where a rapidly changing function
h(r) = Cr− can be identified, but it is more similar to a Junge distribution for r ≥ . μm.
One can also generate other particle number size distributions and compare the reconstruction
with the input. In the first place, the complex refractive index η is assumed to be . − .i
and .−.i, respectively.Then we invert the same data, supposing η has an imaginary part.
The complex refractive index η is assumed to be . − .i and . − .i, respectively. The
precision of the approximation is characterized by the root mean-square error (rmse)

rmse =

-
.
./ 

m

m
∑
i=

(τcomp(λi) − τmeas(λi))

(τcomp(λi))
, ()

which describes the average relative deviation of the retrieved signals from the true signals.
In which, τcomp refers to the retrieved signals, τmeas refers to the measured signals. Numerical
illustrations are plotted in > Fig. b with noise level δ = . for different refractive indices,
respectively. The behavior of regularization parameter is plotted in > Fig. a. The rmses for
each case are shown in > Table .

 Conclusion

In this chapter, we study the regularization and optimization methods for solving the inverse
problems in geoscience and quantitative remotely sensing.Three typical kernel-based problems
are introduced, including computation of number of aerosol particle size distribution function,
estimation of land surface biomass parameter and backscatter cross-section. These problems
are formulated in functional space by introducing the operator equations of the first kind. The
mathematical models and solution methods in l and l spaces are considered. The regular-
ization strategies and optimization solution techniques are fully described. The equivalence
between the Tikhonov regularization and Bayesian statistical inference for solving geoscience
inverse problems is established.The general regularization model in lp–lq (for p, q ≥ ) spaces,
which can be convex or non-convex, are introduced. Numerical simulations for these problems
are performed and illustrated.
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Iterative computational values of regularization parameters when the error level δ = . (a); input
and retrieved results with our inversion method in the case of error level δ = . and different
complex refractive indices (b)

⊡ Table 
The rmses for different noise levels

Noise levels η = . − .i η = . − . i η = . − .i
δ = . . × − . × − . × −

δ = . . × − . × − . × −

δ = . . × − . × − . × −
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