Regularized inversion method for retrieval of aerosol
particle size distribution function in W'"? space
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A determination of the aerosol particle size distribution function by using the particle spectrum extinction
equation is an ill-posed integral equation of the first kind. To overcome this, we must incorporate regular-
ization techniques. Most of the literature focuses on the Phillips—Twomey regularization or its variations.
However, there are drawbacks for some applications in which the real aerosol distributions have large
oscillations in a Junge-type distribution. The reason for this is that the scale matrix based on the norm of
the second differences in the Phillips—Twomey regularization is too ill-conditioned to filter the large per-
turbations induced by the small algebraic spectrum of the kernel matrix and the additive noise. Therefore
we reexamine the aerosol particle size distribution function retrieval problem and solve it in W2 space. This
setting is based on Sobolev’s embedding theorem in which the approximate solution best simulates the true
particle size distribution functions. For choosing the regularization parameters, we also develop an
a posteriori parameter choice method, which is based on the discrepancy principle. Our numerical results
are based on the remote sensing data measured by the CE318 sunphotometer in Jia Xiang County, Shan

Dong Province, China, and are performed to show the feasibility of the proposed algorithms. © 2006

Optical Society of America
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1. Introduction

An atmospheric aerosol is a suspension of small solid
or liquid particles in the atmosphere, which plays an
important role in atmospheric and environmental re-
search since it takes part in many physical and chem-
ical processes in the atmosphere. Because of the wide
variety of sources, the properties of atmospheric aero-
sol particles, such as size, shape, chemical composi-
tion, and optical thickness, may be heterogeneous, and
their temporal and spatial variation can be very
large.1-3 The aerosol particles are closely related to the
aerosol optical properties, especially in urbanized and
industrialized areas.* A thorough understanding and
explanation of the impact of atmospheric aerosol on
sunlight transmission in the atmosphere requires a
knowledge of aerosol optical properties such as ext-
inction, scattering cross section, phase function, and
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single-scattering albedo, as well as microphysical aero-
sol properties, such as the particle size distribution
function and light refraction coefficient.56 Meanwhile,
aerosol particle size distribution and aerosol optical
thickness are two important properties for character-
izing the aerosol particles and the correction of the
atmosphere.

A. Brief History of Aerosol Particle Size Distribution
Function Retrieval

It is well known that the characteristics of aerosol
particle size, which can be represented as a size dis-
tribution function in the mathematical formalism,
say n(r), play an important role in affecting the cli-
mate, so it is necessary to determine the size distri-
bution function of the aerosol particles. Since the
relationship between the size of atmospheric aerosol
particles and the wavelength dependence of the ex-
tinction coefficient was first suggested by Angstrom
in 1929, the size distribution began to be retrieved
by extinction measurements. First, Angstrom in-
ferred that the parameters of a Junge size distri-
bution could be obtained by the aerosol optical
thickness at multiple wavelengths and produced
the useful Angstrom empirical formula of Junge
size distribution T,,, = B\, in which 7, is the
aerosol optical thickness (AOT), B is the turbidity



coefficient, and « is the Angstrém exponent reflecting
the aerosol size distribution.

The well-known relationship between the aerosol
size distribution and AOT 7, can be written as

Taero(N) = f f Tr*Qew(T, N, M)n(r, 2)dzdr, (1)

0 0

where r is the particle radius, n(r, z) is the aerosol
number density at height z, 1 is the complex refrac-
tive index of the aerosol particles, \ is the wave-
length, and Q..(r, A\, n) is the extinction efficiency
factor from Mie theory. Performing the height inte-
gration, Eq. (1) can be written as

Taero()\) = f Trerext(ry )\a 'ﬂ)n(r)dr, (2)

0

where n(r) is the columnar aerosol size distribution
(i.e., the number of particles per unit of area per the
unit radius interval in a vertical column through the
atmosphere). Since the AOT can be obtained from
the measurements of the solar flux density with sun-
photometers, one can retrieve the size distribution by
the inversion of AOT measurements through the above
equations. This type of method is called extinction
spectrometry, which is not only the earliest method to
apply remote sensing to determine atmospheric aero-
sol size characteristics, but also the most mature
method thus far.

Phillips? and Twomey? referred to the above prob-
lem to solve the first kind of Fredholm integral equa-
tion theoretically, and developed some corresponding
linear inversion techniques. Note that n(r) cannot be
written analytically as a function of the 7., values,
and a numerical approach must be followed. So
far, linear and nonlinear iterative techniques have
been developed to solve the Fredholm integral equa-
tion. Yamamoto and Tanaka® were the first to apply
a numerical inversion algorithm to this problem.
Grassl0 presented a new and reliable iterative meth-
od to invert the spectral extinction data and obtained
the size distributions.1° Twomey!! drew a comparison
between the constrained linear inversion and an it-
erative nonlinear algorithm applied to retrieve the
aerosol particle size distributions. In both cases, he
obtained the aerosol size distribution n(x) from a set
of measurements {o;} ¢ = 1, ..., m), where

0; :f K(x)n(x)dx+¢ (x=Inr) 3

a

where K;(x) is the kernel function that could be ob-
tained by the filter transmissions at various air flows.
For the constrained linear inversion, Twomey numer-
ically introduced the simple measure of smoothness,
the variance of i [i.e., >(#; — 7i;_1)’], which could be
written as 7i”H7, and referred to the above problem to

solve the vector 7, such that 7i”H7 approached a min-
imum while D¢, was held fixed and was solved by the
method of Lagrangian multipliers. The results were
so disappointing in that this linear method was only
successful for reasonable distributions other than the
real aerosol distributions in which large oscillations
appeared in the Junge-type distribution. In addition,
it was restricted to the wide dynamic range of mea-
surements. Aiming to solve this and based on existing
iterative methods, a modification was suggested as
follows:

i, O@) = [1+[r," P = 1]K®) i, D), @
where

O,
i—1) _ ¢ _
r D = =
p

j K;(x)7, P (x)dx f K ()7, P (x)dx

The results showed that this iterative nonlinear algo-
rithm had advantages when the object function and
the measurements extended over a wide dynamic
range. Furthermore it was more reliable since a
smooth initial guess was multiplied by smooth adjust-
ing functions at each step. However, the method was
slower than the constrained linear inversion.

King et al.'2 derived an inversion formula that in-
cluded the magnitudes of the measurement variances
and inferred the columnar aerosol size distributions by
inversion of spectral optical measurements in Tucson
with a solar radiometer. King et al.12 separated the size
of the distribution function into two parts, one of which
was a rapidly varying function, while the other was a
slowly varying one. By following the method suggested
by Phillips” and Twomeys8, King et al.'2 concluded that
the columnar aerosol size distributions could be clas-
sified in terms of three different types of distribution:
type I was a Junge distribution, type II was a relatively
monodispersed distribution of the lognormal or a
gamma distribution, and type III was a two-
component system of a Junge distribution plus a rela-
tively monodispersed distribution. They also presented
the results of a representative selection together with
a discussion of the sensitivity of spectral extinction
measurements to the radius limits and refractive in-
dex assumed in the inversion. Moreover, the King et
al.’ results were in agreement with those of Curcio.13
By applying the constrained linear inversion meth-
ods,* Shaw!4 combined the scattering and extinction
matrix into a single matrix to recover the aerosol size
spectra.

Nguyen and Cox!5 proposed a modified deconvo-
lution algorithm for inverting the extinction mea-
surements at multiple wavelengths to retrieve
particle concentrations and size distributions by
solving the previously described Fredholm integral
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equation. Ramachandran and Leith6 modified the
algorithm by adding an optimization routine that
changed the values of the limits of integration until
the standard deviation of the differences between
the actual measurements and the back-calculated
measurements was minimized. Then they recon-
structed the concentrations and size distributions
for simulated and experimental measurements of
light extinction caused by different aerosols and
evaluated its performance.’® The results showed
that the inversion worked well only for aerosols in
the accumulation mode (300 nm < dj, < 2500 nm,
where d5, was the count median diameter). This al-
gorithm was reliable for reconstructing multimodal
distributions in the accumulation region. However,
the reconstructions were of poor quality when the
function to be retrieved was the sum of two delta
functions. In addition, there was a broadening of the
true distributions in the reconstructed frequency dis-
tributions. In a subsequent paper Ramachandran
and Leith!” used an iterative tomographic recon-
struction algorithm together with the algorithm in
Ref. 16 to obtain the spatial distribution of aerosol
extinction coefficients and the aerosol size distribu-
tions at selected locations. However, their study was
based on the assumption that the refractive index
was the same between all the aerosol sources. If the
sources have different but known refractive indices,
any one assumed value would result in errors in re-
construction. So this area needs further research.
Additionally, Lumme and Rahola!® applied a new it-
erative method, the quasi-minimal residual algorithm
(QMR), to the system of linear equations arising in
discrete-dispole approximation (DDA) applications.
Heintzenberg?® presented the properties of the lognor-
mal aerosol particle size distribution and the relation-
ships between the integrals of the different moments of
the lognormal distribution. Shifrin and Zolotov2° stud-
ied the marine aerosol size distribution by using the
concept of regularization. Ye et al.2! developed a sto-
chastic inverse technique based on a genetic algo-
rithm (GA) to invert particle-size distribution from
angular light-scattering data. Bockmann?22? devel-
oped a hybrid regularization method for the ill-
posed inversion of multiwavelength lidar data in
the retrieval of aerosol size distributions. This in-
verse technique is independent of any given a priori
information of particle-size distribution. However,
since this method involves solving nonlinear ill-posed
equations and singular value decomposition, the cost
of computation should be a large burden. Recently,
along with the applications of the MODIS remote
sensing and the lidar technique, great progress has
been made in the retrieval of the aerosol size distri-
bution.23.24

B. Brief Review on Measuring Aerosol Particles

For the measuring of aerosol particles, the majority
of results of the research on aerosol size distribu-
tions have been obtained statistically from direct
measurements with instruments called aerosol
spectrometers, where different instruments possess

7458 APPLIED OPTICS / Vol. 45, No. 28 / 1 October 2006

different principles. The measurement systems con-
sist mainly of cascade impactors [e.g., a compact mul-
tistage cascade impactor (CCI),2> or an Anderson
cascade sampler26.27], a diffusion battery (e.g., screen
diffusion battery?28.29), electrical systems [e.g., differ-
ential mobility analyzer (DMA)39], and optical sys-
tems [e.g., an optical particle counter (OPC),31.32
lidar,22:33 and the sunphotometer34]. Further aspects
of aerosol particle size distribution measurements
and the physical background of measurement instru-
ments can be found in Refs. 35-37 and the references
therein. Our research relies on the optical system sun-
photometer CE318, a description of which will be given
in Section 2. Even though several applications of the
inversion methods for size distributions through opti-
cal systems were studied, the methods involved were
still the ones that Phillips and Twomey proposed.
Moreover, most of the above work was done under the
conditions of certain assumed distributions, such as a
Junge-type distribution or normal distribution.

As noted above, the traditional Phillips—Twomey
method for linear methods was successful only for rea-
sonable distributions other than the real aerosol dis-
tributions in which large oscillations appeared in the
Junge-type distribution. Overcoming the large oscilla-
tions is a major task in retrieval of the aerosol particle
size distribution function. Here we study what is be-
lieved to be a new solution for the retrieval of aerosol
particle size distribution by using field-based measure-
ments with the sunphotometer CE318, which was de-
signed by CIMEL, France. We first formulated the
problem in the abstract functional space, then by using
Sobolev’s embedding theorem, we studied the solution
of the problem in W"? space, which is known as the
Tikhonov regularization. Finally, numerical experi-
ments were performed to show the efficiency of the
proposed solution.

Section 2 introduces the experimental site in this
study and the sunphotometer specifications. Section 3
provides the background for the problem formulation
in infinite space and the traditional solution methods.
Subsection 3.A formulates the problem by operator
equations of the first kind. Subsection 3.B discusses
the traditional least-squares error method and states
its shortcomings. Subsection 3.C provides a short re-
view of the Phillips—Twomey regularization method.
In Subsection 4.A the Tikhonov regularization in W*?
space is presented. In subsection 4.B the numerical
implementation from infinite space to finite space is
discussed. In Subsection 4.C the aerosol particle
size distribution function retrieval problem by the
Tikhonov regularization method is addressed, and an
a posteriori regularization parameter choice method
is introduced. Section 5 uses the ground-based re-
motely sensed measurements to verify the numerical
results. In Section 6 some concluding remarks are
given.

2. Experimental Site and Instrument Specifications

Our investigations were carried out in May 2005. The
test area in this study was Jia Xiang County, Shan



Dong Province, China. We chose Jia Xiang County as
the test area because it is an industrialized area with
high pollution, and the environmental status is un-
dergoing control. It is also a typical test region in the
China National 863 Project. The county has a great
deal of coal mining. The altitude and the pressure of
Jia Xiang County are 35-40 m and 1016 hpa, respec-
tively. The relative humidity is 68%; the wind speed
in winter is approximately 3.3 m/s, and in summer
the wind speed is approximately 3.1 m/s. We per-
formed the data measurement in a region that is
located at longitude 116°20'4” east and latitude
35°17'39" north of Greenwich. It is approximately 20
km from a small county airport. It is noted that Jia
Xiang is not a big city, and there are few incoming
airplanes each month. Therefore the traffic may not
cause the local air pollution as much as the thermal
and humidity regimes in the atmosphere of the mea-
surement area.

The sunphotometer for measuring the attenuation
of aerosols is a CE318 (see Fig. 1). The CE318 is
manufactured by CIMEL Electronic, Paris, France. It
is a portable automatic tracking radiometer measur-
ing the Sun and sky luminances in eight filters over
the visible to near-infrared wavelengths, which are
used to retrieve atmospheric parameters, including
spectral AOT, precipitable vapor, sky radiance distri-
butions, and the ozone amount. Then the aerosol
volume and size distribution can be retrieved by in-
version modeling of the spectral AOT.

The CE318 instrument comprises three parts: a
sensor head, a control box, and a stepping motor sys-
tem with double axes. The sensor head has two 33 cm
collimators. One of them does not have focusing
lenses and is used to measure the direct solar radia-
tion. The other has focusing lenses and is used to
measure the sky radiance. The field of view (FOV) of
both collimators is 1.2°. Moreover, there is a quad-
rant detector fitted on the sensor head that is used for
fine tuning when the sensor head automatically
tracks the Sun. The control box is equipped with two
microprocessors, which are used to obtain the data
and to control the stepping motor system. The step-

Au!omat“c sun-tracking sunphotometer,

Fig. 1. (Color online) Sunphotometer CE318.

Table 1. Characteristics of CE318

Central Calibration
CE318 Wavelength Parameter Bandwidth
Channels (nm) Vo (nm)
1 1020 12580.00028 10
3 670 28405.62915 10
4 440 15875.01674 10
6 870 24375.26841 10

ping motor system has two degrees of freedom for the
azimuth and altitude measurements and controls the
elementary Sun tracking by time equations and makes
accurate tracking by the quadrant detector system.

The CE318 has four aerosol channels: 440, 670,
870, and 1020 nm, which can be used for estimating
aerosol optical thickness (see Table 1). The band-
width of the spectral channels is 10 nm. A filter at 936
nm is used for measuring atmospheric water vapor.
The CE318 is additionally fitted with three polarized
filters at 870 nm. The instrument automatically
computes the position of the Sun and tracks its
movement, and it is also useful for the atmospheric
correction of remote sensing data. The CE318 also
includes onboard data storage and data transmis-
sion capabilities.

3. Background

The general formulation of inversion schemes using
the operator theory in functional space is briefly de-
scribed and illustrated in finite space.

A. Problem Formulation by Operator Equations of the
First Kind

A common feature of all particle size distribution
measurement systems is that the relation between
noiseless observations and the size distribution
function can be expressed as a first-kind Fredholm
integral equation?:38.39

J k(x, y)n(y)dy = o(x), (5)

where [x,, x| is the integral interval that character-
izes the lower and upper limits of the size range of
interests, o(x) is an error-free observation, x is a pa-
rameter related to particle size (e.g., x = In r), and
k(x, y) is a weighted function (or more generally, the
kernel function) that characterizes the classification,
losses, and detection properties of the measurement
system.

As a practical matter, the observations are usually
contaminated by noise. Hence the relation (5) between
the observation o; and the size distribution n(x) is

Xp
j k(x, y)n(y)dy +e(x) = o(x) +e(x) =d(x), (6)
where e is the unknown observation error. Therefore
the inverse problem is to solve a perturbed Fredholm
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integral equation of the first kind to get the aerosol
particle size distribution 7n(x).

Let us rewrite Eq. (2) in the form of an abstract
operator equation

K:F—>0,

Kn dZEfj k(r, N, n)n(r)dr = Ty, (7

0

where k(r, \, 1) = mr2Q.(r, \, m), F denotes the func-
tion space of aerosol size distributions, and O denotes
the observation space. Both F' and O are considered to
be the separable Hilbert space. Note that 1, is the
measured term, and it inevitably induces errors e.
Hence instead of Eq. (7), we have

Kn+e=1,,+te=d. (8)

B. Least-Squares Error Solution Method

Using collocation as described in Subsection 4.B for
numerical computation, Eq. (8) can be rewritten in
matrix—vector form

-

An+e=d, 9)

where 7 is the discretization of the continuous oper-
ator K, and the arrows on n, e, and d represent the
corresponding vectors.

The least-squares solution of Eq. (9) in I, space
refers to the unconstrained optimization problem

1.
min J*[71] = 5ld — ¥l . (10)

However, the solution of Eq. (10) should be avoidable.
The reason is that the minimization of J* is equiv-
alent to the so-called normal equation

HT%7 — HTd = 0. (11)

Note that ¥ is discrete ill-posed, which means that
the ratio of the largest singular value to the smallest
singular value of 3 will approach infinity for a suffi-
ciently large number of discretizing nodes N. Note
that

cond(H"%) > cond(¥),

hence, Eq. (11) is more ill-posed. This indicates that
the regularization is a must for recovering particle
size distribution n.

C. Phillips-=Twomey Regularization

Phillips—Twomey regularization is based on solving
the discrete operator Eq. (9) with constraints. At this
point, they solve the following problem given that
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Hn+e=d,
Bl = A (12)
to vary é within the permissible limits so that a min-
imum is attained by a quadratic form Q(72)= (D, #),
where D is a preassigned scale matrix. Note that the
minimal value is attained by @ on the boundary, i.e.,
llell = A, therefore, one actually solves a constrained
optimization problem

min; Q(1),
. Lo (13)
subject to ||Hn — d|| = A.

By introducing the Lagrangian multiplier w, one can
minimize the Lagrangian functional

1 -
L,(n)= 3 K7 — d|* + 9 Q(n), (14)
which leads to the following normalized equation:

977 + wDi — %7d = 0. (15)

In the Phillips—Twomey formulation of regulariza-
tion, the choice of the scale matrix is vital. They chose
the form of the matrix D by the norm of the second
differences, >V, (7i,_, — 2#; + i;.,)°, which corre-
sponds to the following form of matrix D:

1 -2 1 0 0 0
DrZ 5 -4 1 0 0
Dl -4 6 -4 1 O

0 1 -4 6 —41

D=D(5)

O O O O
O O O O
O O O O

0 0 0 1 -
[o o o 00 1 -4 6 -4 1
0 0 0 000 1 -4 5 -2
(o o o 000 0 1 -2 1]

However, matrix D is badly conditioned. For ex-
ample, with N = 200, the largest singular value
is 15.99801215000452 by double machine precision.
The smallest singular value is 6.495571054857827 X
107'7 by double machine precision. This indicates
that the condition number of matrix D defined by the
ratio of the largest singular value to the smallest
singular value equals 2.462910807209186 x 107,
which is worse. Hence for small singular values of the
discrete kernel matrix ¥, scale matrix D cannot have
them filtered even with the large Lagrangian multi-
plier w. This numerical difficulty encourages us to
study a more robust scale matrix D, which is formu-
lated in the next section.

4. Regularizing Methods for Retrieving the Aerosol
Particle Size Distribution Function

In this section, we briefly review the Tikhonov regu-
larization and discuss the application of the theory



to the aerosol particle size distribution function re-
trieval problem. We show that the regularization in
W'"? has a better performance than the highly cited
Phillips—Twomey method.

A. Regularization in W'2 Space

A complete theory for regularization was established
by Tikhonov and Arsenin.4® We will employ this the-
ory for the retrieval of the particle size distribution in
W2 space, since it has been noted that the traditional
Phillips—Twomey method for a linear method was
successful only for reasonable distributions other
than the real aerosol distributions that appeared as
large oscillations in the Junge-type distribution.
Suppose that we may conclude from a priori con-
siderations that the exact aerosol particle size distri-
bution function n(r) corresponding to 7,.,, is @ smooth
function, and we assume that n(r) is continuous on
[a, b] and has almost everywhere a derivative that is
square integrable on [a, b]. By Sobolev’s embedding
theorem,4041 the continuous differentiable function
n(r) in W space embeds into integrable continuous
function space L, automatically. Therefore we can
construct a regularizing algorithm that has an ap-
proximate solution 7,““(r) € W*¥a, b] that con-
verges as || » 0, to nyw(r) in the norm of space
W'Y, b]. In this setting, we construct the functional

J[n(r)] = pr KN, Taero] T aL(n), (16)

where
1 2
pF[Kn, Taero] = E”k(ra A, 'r])n(r) - Taero()\)”Lz )

1 2
L(n)=§ 7 (7)[lwr2”.

The definition of the inner product of the two func-
tions x(¢) and y(t) in W"? space is

def no Jdx dy
wmyww“=fP@MU+EMﬂa
Q
X d¢,dty, ..., dtn], 7

where () is the assigned interval of the definition.
Assume that the variation of n(r) is flat near the
boundary of the integral interval [a, b]. So the deriv-
atives of n(r) are zeros at the boundary of [a, b]. Now
minimizing J%[n(r)], we obtain the following integro-
differential equation with boundary condition4!

a[n"(r) —n(r)] —f k(r, & n)n(&)dé =E(r), (18)

a

n'(a) =0, n'(b) =0, (19)

where

b
k(r, & ) =f k(r, N, ME(E N, m)d\,

a

b
i$®=—fﬂhhnﬁm@mk

a

Equations (18) and (19) are the regularized form and
can be used for the solution of n(r). Now, the discreti-
zation is the remaining task.

B. Discrete Implementation

Note that Eq. (16) is an infinite dimensional problem
with only a finite set of observations, so it is improb-
able to implement such a system by computer to get
a continuous expression of the size distribution n(r).
By using collocation, the infinite problem can be writ-
ten in a finite-dimensional form by sampling some
grids {rj}jl\il in the interval of interests [a, b]. For
example, matrix A of the linear operator approximat-
ing the integral operator in Eq. (7) by the trapezoid
quadrature rule can be written as

hrk(ri, )\J, 'T]), j:2,...,N_1

_1n, - (20)
Y §k(ri7 )\j7 T]), J= 1’ N

for different i, where A, is the step size of the grids in
l[a, b], which can be equidistant if A, = (b — a)/
(N — 1) or different if A, is variable or adaptive.

In general, when solving Eq. (16) we always have to
keep track of the fact that the error of approximating
the integral in Eq. (7) is substantially smaller than
the error of specifying the right-hand side. For this
reason, it is necessary either to choose sufficiently
dense grids, increasing the dimension of the problem,
or to use more exact quadrature formulas. However,
at the same time, the computing time expenditures
and the degree of the underdetermination become
higher.

Using the difference scheme

ri=a+@—05)h, i=1,2,...,N; h,= ,

we have the discrete linear equations

1 N _
(63 P(ni—l —2n, + ni+l) -—n;|—- 21 hrkijnj = Taeroi>
r J=

1=1,2,..., N—1, (21)
ny—ng Ny~ Ny
T_O’ T_O’ (22)
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Table 2. Meteorological Data in the Jia Xiang Measurement Area®

Hv T RH LpP VP
Date Time WFS (km) °C) (%) (hPa) (hPa) wC
29 April 2005 10:00 3 2.8 25.6 68 998.1 22.4 Thin cloud, smoky
11:00 3 3 274 66 997.7 24.1
30 April 2005 9:00 3 1.5 24.5 82 995.7 25.2 Thin cloud, PS, foggy and smoky
10:00 2 1.6 26.4 75 995.5 25.9
2 May 2005 9:00 2 8 18.9 47 1010.4 10.2 Thin cloud, Smoky at 9:00 to
10:00 3 8 20.2 31 1010 7.3 11:00, PC from 11:00
11:00 2 10 21.5 31 1010 8
12:00 1 12 22.9 32 1010.1 9
13:00 1 12 24.2 29 1009.1 8.7
14:00 3 12 24.4 31 1008.1 9.5
3 May 2005 9:00 3 10 18.7 47 1006.8 10.1 Mostly cloudy, AC
10:00 4 10 20.7 50 1006.1 12.1
11:00 3 12 22.3 50 1005.4 13.1
12:00 5 12 23.3 40 1004.6 11.6
13:00 5 15 24.9 41 1004.1 13.1
14:00 3 18 25.6 33 1003.4 10.9
6 May 2005 9:00 3 14 17.3 51 1006.9 10.1 Cloudless, sunny
10:00 1 16 18.2 35 1006.6 7.4
11:00 0 20 17.8 32 1006.4 7.4
7 May 2005 10:00 6 12 20.9 47 996.6 11.6 Mostly cloudy, PS, PC at
11:00 6 12 22.7 45 996 12.3 10:30-10:45
8 May 2005 9:00 2 10 19.7 26 1005.5 6 Light cloudy
10:00 2 12 20.9 25 1005.8 6.2
11:00 2 15 22.1 22 1005.2 5.8
12:00 1 15 24.9 19 1005 6
13:00 2 15 24 26 1004.2 7.8
9 May 2005 9:00 0 10 19.1 54 1003.4 11.9 Cloudless, sunny and smoky
10:00 0 8 22.4 73 1003.4 19.8
11:00 0 8 23 63 1003.3 17.7
12:00 0 8 22.4 59 1002 16
13:00 1 8 23.9 61 1002.7 18.1
14:00 0 7 25.5 56 1002.3 18.3
11 May 2005 9:00 6 0.9 19.1 84 1001.9 18.6 Foggy at 9:00-10:00, smoky
10:00 4 2.3 22.6 67 1002.6 184 from 11:00
11:00 3 6 22.7 52 1003.1 14.3
12:00 3 7 23.2 49 1003.5 13.9

“There is no observation data on 1 May, 4 May, 5 May, and 10 May due to bad weather conditions.

where n; = n(r); /?cij = k(r, &, M), and Toers = Taeno7;)  Where H is a triangular matrix in the form
are defined by

1+1/h2 —1/A2 0 0
b -1/h? 1+2/h> —1/h% - 0
k ri, €, m :J k(ri, N, ME(E, N, m)d\, H = : : ]
(i, & M) a ( (&) ) o L _Une 1e2hr —1p
0 0 ~1/h2 1+1/h>
b
TN — _ Suppose we are interested in the particle size in the
Taero(rl) f k(rn )\7 n)Taero(}\)d)\. mterval [01’ 4] um, the Step Size is hr - 39/(N o 1)

a

Now choosing the discrete nodes N = 200, the largest

From Eq. (20) and by denoting A = (A,)y., 7 and singular Valqe of H 1s 1.041482176501067 X .104 by
7= the corresponding vectors, we have from Eqs. (21) double machme precision, and the smallest s1ngu}ar
o (99) that P ? e value of H is 0.99999999999953 by double machine
an a precision. Compared to scale matrix D of the Phillips—
Twomey regularization, the condition number of H is

1.041482176501554 X 10*, which is better than D in

ATAR + oHi — ATT e = 0, (23) filtering small singular values of the discrete kernel A.
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C. Aerosol Particle Size Distribution Function Retrieval

To retrieve the aerosol particle size distribution func-
tion n(r), we need to solve the linear Eq. (23) for the
AOT at different wavelengths. We are interested in
the particle size in the interval [0.1, 10] um. Note
that a coarse difference gridding (N = 20) induces
large quadrature errors, therefore we chose the large
difference gridding size of N = 200.

To perform the numerical computations, we apply
the technique developed by King et al.,2 that is, we
assume that the actual aerosol particle size distri-
bution function consists of the multiplication of two
functions A(r) and ff): n(r) = h(r)f(r), where h(r) is a
rapidly varying function of r, while f(r) is more slowly
varying. In this way we have

Taero(N) =f [k(r, N\, m)h(r)]f(r)dr, (24)

a

where k(r,\,m) = wr’Qu(r,\,m), and we denote
k(r, N\, m)h(r) as the new kernel function correspond-
ing to a new operator =:

(Ef)(T) = Taero(N)- (25)

For simplicity of notation, the discretization of E is
again denoted by matrix A.

Note that choosing the regularization parameter
« is also a major issue in numerical computation. In
theory, a can neither be too large nor too small. A
larger « yields a well-posed problem but the solu-
tion is far from the true value. On the other hand,
a smaller «a yields a better approximation but with
large instabilities. Therefore a trade-off must be
found to balance the ill-posed nature of the discrete
matrix A. There are two types of parameter selec-
tion method: the a priori way and the a posteriori
way. Practically, for an a priori choice of the regu-
larization parameter, o« should be limited to within
(0, 1). For example, we can set o equal to 0.005 or
0.01. However, an a priori choice of regularization
parameter o does not have the noise/error involved
in consideration. Therefore it is not an optimized
one, which means the solution is not an optimized
solution. So, we consider the a posteriori approach
for choosing the regularization parameter.

From Eq. (23) we have the particle size distribution
function 7(r), which is closely related to parameter o.
So we denote 71,(r) instead of 7i(r) as the retrieved
value in the numerical computation. We use the
widely cited discrepancy principle to find an opti-
mized regularization parameter a*,4-41 which is the
root, of the nonlinear function

V(@) = ATty Toemol* — 87, (26)

where d is the error level to specify the initial data. It
is easy to show that W(«a) is differentiable. Therefore

Table 3. Descriptions of the Abbreviations

Abbreviations Descriptions
wC Weather conditions
HV Horizontal visibility
\'A% Vertical visibility
T Atmospheric temperature
RH Relative humidity
LP Local pressure
VP Pressure of water vapor
WFS State of wind force (wind speed)
HVC High vapor content
LvC Low vapor content
AC Altostratus cloud
PS Partly sunny
PC Partly cloudy

fast algorithms for solving a* can be implemented
such as the cubic convergent algorithm developed in
Ref. 42:

B 2V (o)
W (o) + [P (0)2 — 2W (o) ¥ () ]2
(27)

Api1 = Qg

Denoting B(a) = |[HY?4%%, we have

() = —ap’(a),

dn
1720 b
‘H da

V() = —B" (o) — 2a|:

where

! ! ! n ! ! ! !
8 9 10 1 12 13 14 15 16 17
Local Time

Fig. 2. Air-mass variation at local time from 2 May to 11 May
2005.
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Fig. 3. Variation of AOT on 2 May 2005.

Finding #,, dii,/da, and d%i,/do® will lead to a solu-
tion of the following equations:

(A"A + aH)it,, = AT, (28)
(A"A + aH)it,,' = —Hii,, (29)
(A"TA + aH)f,," = —2HH,, . (30)

For the solution of the linear matrix—vector Eqs. (28)-
(30), we use the Cholesky decomposition method. A
remarkable characteristic of the solution of Eqgs. (28)—
(30) is that the Cholesky decomposition of the coeffi-
cient matrix A”A + oH needs only once then the three
vectors 7i,, dii,/da, d*i,/da® can be obtained cheaply.

5. Discussion of Numerical Results

Here we choose the ground measured data of sunpho-
tometer CE318 (see Fig. 1) to test the feasibility of the
proposed algorithm. We performed successive exper-
iments using the CE318 from 29 April to 11 May
2005 (see Table 2) for meteorological information
and weather conditions. To simplify notations, we
describe several abbreviations for weather condi-

I~
o
<
2
8
go4s5F @
w %* * *
o . . *
g 04r 4 o
e ; SR
<3 . A4
g 035 % o a o
+
0l @ * & &
+ +
* *
0.25 o
02 0 4 .0 Lo

s s s s
0.4 0.5 0.6 0.7 08 0.9 1 11
wavelength (&) (um)

Fig. 5. Variation of AOT on 8 May 2005.

tions that are used in Table 2. Please refer to Table
3 for the description details.

In these tests, only 2 May, 6 May, 8 May, and 9 May
were used for aerosol inversion. Of the days cited, 6
May and 9 May were cloudless and sunny. On May 6
the weather was perfect, sunshine without clouds,
with an average wind speed of 1.67 m/s, and a hori-
zontal visibility from 14 to 20 km. On 9 May, there
was sunshine but with gray skies and smoke, with an
average wind speed of 0.17 m/s and a horizontal
visibility from 7 to 10 km. On 2 May, it was smoky
and the skies were partly cloudy from 11:00 a.m. with
thin clouds. The average wind speed was 2.33 m/s,
and the horizontal visibility was 8 to 12 km. On
8 May, the skies were lightly cloudy. The average
wind speed was 1.80 m/s and the horizontal visibility
was 10 to 15 km. Since sunphotometer CE318 can
track the Sun and record the digital numbers (DNs),
we also chose the AOTSs of the two days but we re-
moved some apparent abnormal values.

The air-mass history from 2 May to 11 May is
plotted in Fig. 2. It is illustrated from the figures that
the air mass did not change too much at local time on
the different days but varied rapidly on each day. We
calculated the AOT at different wavelengths \ (um),
by using the data measured on 2 May, 6 May, 8 May,
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Fig. 4. Variation of AOT on 6 May 2005.
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Table 4. Optimum Values a* of the Regularization Parameter for Every Daily Observation

6 measurements

5 measurements

2 May 6 May 8 May 9 May
2.4909 x 106 1.7281 x 106 1.9998 x 1076 55219 x 10°°
2.6598 x 106 1.6260 x 10~ 2.9625 x 10~° 6.2326 x 10°°
3.2731 x 10°° 1.5675 x 107¢ 3.1287 x 10°¢ 5.6559 X 10~°
2.6221 x 107¢ 1.5686 x 107 3.4677 X 107° 4.6148 x 107°
2.7817 x 10~ 1.2831 x 10°¢ 4.1743 x 10°° 4.6250 X 106
2.7637 X 10~ 4.8941 x 107° 4.0833 X 10°¢

4.3825 x 10°¢
4.1927 x 107°

8 measurements 6 measurements

and 9 May. The plots of the AOT variations with
regard to wavelength \ on these four days are illus-
trated in Figs. 3, 4, 5, and 6, respectively. It is obvious
from the AOT variation curves of 6 May and 9 May,
that the slope of the AOT variation is similar. Evi-
dently, the AOT can change at different times of a
day. It increases from morning to noon, approaching
its maximum at noon, and decreases with the in-
crease of the wavelength. The magnitudes in both
graphs indicate highly polluted air. However, the
AQOT values on 9 May were larger than those on 6
May. The reason is that the skies on 9 May were
smoky, which induced large AOT values, and this
coincided with the environmental conditions of Jia
Xiang County, according to our measurements. For
the AOTs on 2 May and 8 May, because of the effect
of the clouds they were not so regular as those on 6
May and 9 May.

We know that Jia Xiang County is an industrial-
ized county with high pollution. The environmental
pollution induced by coal and calcareousness mining
and also industry combustion has an impact on the
air conditions of the local district. Therefore we chose
the complex refractive index as n = 1.6-0.1:.26 For
the error level 8 in specifying the initial data and the
approximate degree of quadrature, we chose & =
0.001, since we chose a large grid number N = 200,
which sufficiently approximates the integral. In the
numerical experiments, we chose the initial guess
value «, of the regularization parameter as 0.005.

particle size distribution function n(r) (cm‘zvum“ )

.
10°
aerosol particle radius (r) (um)

Fig. 7. Particle size distribution on 2 May 2005.

Then each o, was iteratively calculated by the itera-
tion formula in Eq. (27). The optimum regularization
parameters a* for every measurement on each day
are recorded in Table 4. It is seen from Table 4 that
the optimum values of «* should be approximately
0O(1.0e—6). By our algorithms, the retrieval results
the number of size distribution function n(r) on 2
May, 6 May, 8 May, and 9 May are plotted in Figs.
7-9, and 10, respectively. We see from these figures
that there were several rock bottoms in their local
neighborhood. On all the chosen days, the particle
size distribution function oscillated in the intervals
[0.4,0.7] pm and [7, 10] pm, and changed stably out-
side these intervals. Even for the data measured on 2
May and 8 May the slope was similar. It can also be
seen from the figures that the size distribution for
small particles on 9 May is larger than that on other
days. This is because on 9 May the air was continu-
ously mixed with smoke, which led to large values of
the size distribution function for small particles,
whereas for large particles, the size distribution is
evidently distinguishable. Since the pollution of Jia
Xiang County is mainly the coal combustion type of
air pollution, particles of size 0.5 pm constitute the
primary particles that can be a major source of air
contamination. Large particles of size 7-10 pm are
composed mainly of sand, wind, soot, and dust. The
results are consistent with the local air conditions
and our observations.

particle size distribution function n(r) (cm‘2 pm" )

10°

aerosol particle radius (1) (um)

Fig. 8. Particle size distribution on 6 May 2005.
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Fig. 9. Particle size distribution on 8 May 2005.
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Fig. 10. Particle size distribution on 9 May 2005.

6. Concluding Remarks and Future Research

We have investigated the regularization methods for
the solution of atmospheric aerosol particle size dis-
tribution function retrieval. We reformulated the
problem in functional space W*? by introducing the
first-kind Fredholm integral equations. Our method is
different from others in the following ways:

(1) Previous research was based mainly on the
Phillips—Twomey regularization and its variants.
Our approach is based on the Tikhonov regulariza-
tion in W*? space.

(2) Previous research on the choice of regulariza-
tion parameter was a priori; that is, the regularization
parameter is a preassigned constant. Qur approach is
a posteriori, which is based on the discrepancy, where
the regularization parameter approaches an optimum
after successive iterations.

(3) A large amount of previous research was
based on measurements by optical particle counters,
differential mobility analyzers, impactors, diffusion
batteries, and lidar. Our research is based on the mea-
surements obtained by using the CE318 sunphotom-
eter, which supplied four aerosol channels that can
be best used for estimating aerosol optical thickness.

7466 APPLIED OPTICS / Vol. 45, No. 28 / 1 October 2006

Hence, it is used for the retrieval of aerosol particle size
distribution function n(r).

The numerical experiments illustrate that our new
algorithm works well for the retrieval of aerosol par-
ticle size distribution functions. Future research will
investigate new scale operators D and develop new
solution methods, and we will do some numerical
verifications based on ground-based remote sensing
data and satellite-based remote sensing data in a
typical test area of China.
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