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Abstract: Evaluation of the land surface albedos by em-
ploying the bidirectional reflectance distribution function
(BRDF) models is one of the important problems in remote
sensing. As is known, the retrieval process is an inverse
problem. In Proposition 3 of [Verstraete et al., 1996],
the authors consider that the number of independent
observations should be greater than the number of the
unknown parameters to describe the physical model as
an overdetermined system, then the inverse process can
be solved. However as Li et al (1998) pointed out that
such a requirement can be hardly satisfied even in the
coming EOS era, the inversion procedure is always un-
derdetermined in some sense. Therefore, in order to solve
the BRDF inversion problem, some new technique must be
developed. Generally speaking, the inverse problems are
ill-posed. Therefore, some regularization technique should
be applied to suppress the ill-posedness. One kind of way
to alleviate the ill-posedness is incorporating with some
apriori knowledge which has been developed in [Li et
al., 2001]. This is actually a constrained least squares
error (LSE) method since the apriori knowledge can be
considered as some kind of constraints to the solution.
Another kind of way is by numerical truncated singular
value decomposition by employing the hotspot remote
sensing data [Wang et al., 2006]. In this paper, we consider
a new solution method, i.e., thel1 norm solution method,
which iteratively solves the kernel-driven bidirectional
reflectance distribution function (BRDF) models for re-
trieval of land surface albedos. This method, is based on
searching for an interior point solution for the problem
in the feasible solution set. This method can always find
a set of suitable BRDF coefficients for poor sampled data.
Numerical performance is given for the widely used 18
data sets among the 73 data sets [Li et al., 2001].

1. Introduction

The real physical system that couples the atmosphere and
the land surface is very complicated and should be continuous,
sometimes it requires a comprehensive parameters to describe
such a system, so any practical physical model can only

be approximated by a model which includes only a limited
number of the most important parameters that capture the
major variation of the real system. Generally speaking, a
discrete forward model to describe such a system is in the
form

D = h(X,S) + n, (1)

whereD is a vector inRM , which is anM dimensional mea-
surement space withM values corresponding toM different
measurement conditions,n ∈ RM is the vector of random
noise with same vector lengthM , X is a vector of controllable
measurement conditions such as wave band, viewing direction,
time, Sun position, polarization, and the forth,S is a vector of
state parameters of the system approximation,h is a function
which relatesX with S, which is generally nonlinear and
continuous. Assume that there arem undetermined parameters
need to be recovered. If more observations can be collected
than the existing parameters in the model, i.e.,M > m
[Verstraete et al., 1996], the system (1) is over-determined.
In this situation, the traditional solution does not exist. We
must define its solution in some other meaning, for exam-
ple, the least squares error (LSE) solution. However as Li
[Li et al 1998] pointed out that, “for physical models with
about ten parameters (single band), it is questionable whether
remote sensing inversion can be an over-determined one in
the foreseeable future.” Therefore, the inversion problems in
geoscience seem to be always underdetermined in some sense.

The bidirectional reflectance distribution function (BRDF)
models are a main class of models which can be inverted
to estimate structural parameters and spectral component sig-
natures of Earth surface cover type [Strahler et al., 1999,
Wanner et al., 1995, Roujean et al., 1992]. As is well-
known, the state-of-the-art of BRDF is the use of the linear
kernel-driven models, mathematically described as the linear
combination of the isotropic kernel, volume scattering kernel
and geometric optics kernel. The computational stability is
characterized by the algebraic operator spectrum of the kernel-
matrix and the observation errors. Therefore, the retrieval of
the model coefficients is of great importance for computation
of the land surface albedos. In [Pokrovsky et al., 2002], the
authors have utilized theQR decomposition for inversion



of the BRDF model. Later on, in [Wang et al., 2006], the
authors consider the singular value decomposition and propose
a regularized version of the method. However, all of the
methods are based on the direct solution of the linear system
by avoiding the direct inversion of the finite rank matrix. This
paper consider the iterative solution methods for retrieval land
surface parameters. This method help us to find a suitable
solution in the feasible set for poor sampled data.

2. Kernel-driven BRDF Model

As advances in the field of multiangular remote sensing, it
is increasingly probable that BRDF models can be inverted to
estimate the important biological or climatological parameters
of the earth surface such as leaf area index and albedo [Strahler
et al., 1994]. A linear kernel driven BRDF model is usually
described in the following form [Roujean et al., 1992]:

fiso + kvol(ti, tv, φ)fvol + kgeo(ti, tv, φ)fgeo = r(ti, tv, φ),
(2)

wherer is the bidirectional reflectance;kvol andkgeo are so-
called kernels, i.e., known functions of illumination and view-
ing geometry which describe volume and geometric scattering
respectively;ti is the zenith angle of the solar direction,tv
is the zenith angle of the view direction;φ is the relative
azimuth of Sun and view direction;fiso, fvol and fgeo are
three unknown coefficients to be adjusted to fit observations.
In [Wang et al., 2006], the model (2) is considered as the
discretized linear operator equations

Kf = r. (3)

Generally speaking, the BRDF model should includes dif-
ferent kernels of many types. However, it was proved that the
combination of RossThick (kvol) and LiSparse (kgeo) kernels
had the best overall ability to fit BRDF measurements and to
extrapolate for BRDF and albedo [Hu et al., 1997; Wanner
et al., 1995]. A suitable expression forkvol was derived by
Roujean [Roujean et al., 1992], i.e., the RossThick kernel; A
suitable expression forkgeo was derived by [Li et al., 2000],
i.e., the LiTransit kernel, we refer to these articles for details.

3. Parameter Retrieval Method: Interior Point Method for
Poor Sampled Data

It is clear that when the number of looks are insufficient
or the location is poor, the physical problem (1), so as
(2) is ill-posed. The ill-posedness occurs not only for the
instability driven by small algebraic characteristic spectrum
but also for choosing a suitable solution from the solution
set consists of infinite solutions. It deserves attention that the
ill-posedness is the intrinsic feature of the inverse problems.
Unless some additional information/knowledge such as mono-
tonicity, smoothness, boundedness or the error bound of the
raw data are imposed, the difficulty is hardly to be solved. As
is pointed out in [Lanczos, 1961] that, a lack of information
can not be remedied by any mathematical trickery. However,
we can retrieve (most of) the information of the original

problem by improvement of the solvability by extension of
the solution space.

Generally speaking, the kernel-driven BRDF model is
semiempirical, the retrieved parametersf are mostly consid-
ered as a kind of weight function though it is a function of
LAI and other related geometric parameters. Therefore,f is
not necessarily positive. However, since it is a weight function,
an appropriate arrangement of the components off can yield
the same results. That is to say,f can be “made” to be positive.
The remaining problem is to develop some proper method. Our
new meaning to the solution is related to thel1 norm problem

minf ‖f‖l1 ,
s.t. Kf = r, f ≥ 0.

(4)

The l1 norm solution method is seeking for a feasible
solution within the feasible setS = {f : Kf = r, f ≥ 0}. So
it is actually searching for an interior point within the feasible
set S, hence is called the interior point method. The dual
standard form of (4) is in the form

max rT g,
s.t. s = e−KT g ≥ 0.

(5)

Therefore, the optimality conditions for(f ,g, s) to be a
primal-dual solution triplet are that

Kf = r, KT g + s = e, S̃F̃ e = 0, f ≥ 0, s ≥ 0, (6)

where S̃ = diag(s1, s2, · · · , sN ), F̃ = diag(f1, f2, · · · , fN ).
The notation diag(·) denotes the diagonal matrix whose only
nonzero components are the main diagonal line.

The interior point method generates iterates{fk,gk, sk}
such thatfk > 0 and sk > 0. As the iteration indexk
approaches infinity, the equality-constraint violations‖r−Kf‖
and ‖KT gk + sk − e‖ and the duality gapfT

k sk are driven
to zero, yielding a limiting point that solves the primal and
dual linear problems. The primal-dual solution is obtained by a
variant of Newton’s method applied to the system of equations
formed by the optimality conditions (6).

4. Numerical Performance

In this section, we give some numerical results to show
that the interior point solution method is suitable for retrieval
parameters for poor sampled data. Assume that there areM
different measurement kernel driven models, then (2) can be
rewritten in the matrix-vector form

K−→X =
−→
Y , (7)

where K ∈ RM×3,
−→
X ∈ R3,

−→
Y ∈ RM . In practice,

the vector
−→
Y should also include different kind of noise.

For simplicity, we assume that the noise is additive, i.e.,
K−→X =

−→
Y δ :=

−→
Y + δ−→n , where δ is the noise level in

(0,1). We also assume that‖−→Y δ −−→Y ‖ ≤ τδ < ‖−→Y δ‖, where
τ > 1. This assumption indicates that the signal-to-noise ratio
(SNR) should be greater than1, otherwise we consider the
observations (BRDF) is not believable. It is clear that (7) is



an underdetermined system ifM ≤ 2 and an overdetermined
system ifM > 3.

In our test, the insufficient look is chosen as the hotspot
data, details and explanation are given in [Wang et al., 2006].
We use the widely used 73 data sets [Li et al., 2001]. Among
the 73 sets of BRDF measurements, only 18 sets of field-
measured BRDF data with detailed information about the ex-
periment were chosen, including biophysical and instrumental
information. For the summary of the basic properties of the
data, we refer to [Wang et al., 2006]. These data sets cover
a large variety of vegetative cover types, and are fairly well
representative of the natural and cultivated vegetation.

We regard the retrieval results from multiangular views as
“true” values, and compare the interior point solutions to the
“true” values. We only list the retrieval results of Kimes’s
data in visible and near infrared bands. From Table 1-Table 2,
we find that the albedos retrieved from one look, two looks
and multiangular looks by our algorithm coincide with each
other satisfactorily (i.e., in our trust region) though there are
obvious deviation among the corresponding values. For other
data, such as Ranson’ and Parabola’s data, the retrievals are
also reasonable.

Table 1. Computational values of the WSAs of Kimes’ data
in Vis band

Single Look Two Looks Multiangular
corn 0.07220191168879 0.11988208939852 0.077371794
hardwood 0.03900181988865 0.02035687953748 0.036017748
irrwheat 0.07330182359673 0.05811263968740 0.066419290
lawn 0.04790188339507 0.06703131273902 0.057035696
orchgrass 0.04910189229549 0.10968810772315 0.078334436
soy 0.00772219426508 0.04000072690462 0.037576732

Table 2. Computational values of the WSAs of Kimes’ data
in Nir band

Single Look Two Looks Multiangular
corn 0.28150185720982 0.27411364595928 0.288654970
hardwood 0.32000182018128 0.19251564731464 0.369430037
irrwheat 0.62100182359988 0.52687758932043 0.513398848
lawn 0.40270185630598 0.51468506078909 0.412934981
orchgrass 0.25370185454194 0.39972500975936 0.296322714
soy 0.06853878697192 0.59945163336588 0.515229716

5. Conclusion

This paper has considered the interior point iterative method
for the solution of the inverse problems in land surface
parameter retrieval. It is clear thatl1 norm solution is a special
case oflp norm solution for0 < p < ∞. It is expected that
the lp norm solution is more applicable in applications.
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